33 research outputs found

    A Bayesian Joint Decorrelation and Despeckling approach for speckle reduction of SAR Images

    Get PDF
    In this paper, we present a novel approach for joint decorrelationand despeckling of synthetic aperture radar (SAR) imagery. An iterativemaximum a posterior estimation is performed to obtain thecorrelation and speckle-free SAR data, which incorporates a correlationmodel which realistically explores the physical correlatedprocess of speckle noise on signal in SAR imaging. The correlationmodel is determined automatically via Bayesian estimation in thelog-Fourier domain and patch-wise computation is used to accountfor spatial nonstationarities existing in SAR data. The proposedapproach is compared to a state-of-the-art despeckling techniqueusing both simulated and real SAR data. Experimental results illustrateits improvement in preserving the structural detail, especiallythe sharpness of the edges, when suppressing speckle noise

    Deep learning for inverse problems in remote sensing: super-resolution and SAR despeckling

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    A Tutorial on Speckle Reduction in Synthetic Aperture Radar Images

    Get PDF
    Speckle is a granular disturbance, usually modeled as a multiplicative noise, that affects synthetic aperture radar (SAR) images, as well as all coherent images. Over the last three decades, several methods have been proposed for the reduction of speckle, or despeckling, in SAR images. Goal of this paper is making a comprehensive review of despeckling methods since their birth, over thirty years ago, highlighting trends and changing approaches over years. The concept of fully developed speckle is explained. Drawbacks of homomorphic filtering are pointed out. Assets of multiresolution despeckling, as opposite to spatial-domain despeckling, are highlighted. Also advantages of undecimated, or stationary, wavelet transforms over decimated ones are discussed. Bayesian estimators and probability density function (pdf) models in both spatial and multiresolution domains are reviewed. Scale-space varying pdf models, as opposite to scale varying models, are promoted. Promising methods following non-Bayesian approaches, like nonlocal (NL) filtering and total variation (TV) regularization, are reviewed and compared to spatial- and wavelet-domain Bayesian filters. Both established and new trends for assessment of despeckling are presented. A few experiments on simulated data and real COSMO-SkyMed SAR images highlight, on one side the costperformance tradeoff of the different methods, on the other side the effectiveness of solutions purposely designed for SAR heterogeneity and not fully developed speckle. Eventually, upcoming methods based on new concepts of signal processing, like compressive sensing, are foreseen as a new generation of despeckling, after spatial-domain and multiresolution-domain method

    Image Restoration for Remote Sensing: Overview and Toolbox

    Full text link
    Remote sensing provides valuable information about objects or areas from a distance in either active (e.g., RADAR and LiDAR) or passive (e.g., multispectral and hyperspectral) modes. The quality of data acquired by remotely sensed imaging sensors (both active and passive) is often degraded by a variety of noise types and artifacts. Image restoration, which is a vibrant field of research in the remote sensing community, is the task of recovering the true unknown image from the degraded observed image. Each imaging sensor induces unique noise types and artifacts into the observed image. This fact has led to the expansion of restoration techniques in different paths according to each sensor type. This review paper brings together the advances of image restoration techniques with particular focuses on synthetic aperture radar and hyperspectral images as the most active sub-fields of image restoration in the remote sensing community. We, therefore, provide a comprehensive, discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to investigate the vibrant topic of data restoration by supplying sufficient detail and references. Additionally, this review paper accompanies a toolbox to provide a platform to encourage interested students and researchers in the field to further explore the restoration techniques and fast-forward the community. The toolboxes are provided in https://github.com/ImageRestorationToolbox.Comment: This paper is under review in GRS

    Deep Learning based data-fusion methods for remote sensing applications

    Get PDF
    In the last years, an increasing number of remote sensing sensors have been launched to orbit around the Earth, with a continuously growing production of massive data, that are useful for a large number of monitoring applications, especially for the monitoring task. Despite modern optical sensors provide rich spectral information about Earth's surface, at very high resolution, they are weather-sensitive. On the other hand, SAR images are always available also in presence of clouds and are almost weather-insensitive, as well as daynight available, but they do not provide a rich spectral information and are severely affected by speckle "noise" that make difficult the information extraction. For the above reasons it is worth and challenging to fuse data provided by different sources and/or acquired at different times, in order to leverage on their diversity and complementarity to retrieve the target information. Motivated by the success of the employment of Deep Learning methods in many image processing tasks, in this thesis it has been faced different typical remote sensing data-fusion problems by means of suitably designed Convolutional Neural Networks

    Fusion of VNIR Optical and C-Band Polarimetric SAR Satellite Data for Accurate Detection of Temporal Changes in Vegetated Areas

    Get PDF
    In this paper, we propose a processing chain jointly employing Sentinel-1 and Sentinel-2 data, aiming to monitor changes in the status of the vegetation cover by integrating the four 10 m visible and near-infrared (VNIR) bands with the three red-edge (RE) bands of Sentinel-2. The latter approximately span the gap between red and NIR bands (700 nm–800 nm), with bandwidths of 15/20 nm and 20 m pixel spacing. The RE bands are sharpened to 10 m, following the hypersharpening protocol, which holds, unlike pansharpening, when the sharpening band is not unique. The resulting 10 m fusion product may be integrated with polarimetric features calculated from the Interferometric Wide (IW) Ground Range Detected (GRD) product of Sentinel-1, available at 10 m pixel spacing, before the fused data are analyzed for change detection. A key point of the proposed scheme is that the fusion of optical and synthetic aperture radar (SAR) data is accomplished at level of change, through modulation of the optical change feature, namely the difference in normalized area over (reflectance) curve (NAOC), calculated from the sharpened RE bands, by the polarimetric SAR change feature, achieved as the temporal ratio of polarimetric features, where the latter is the pixel ratio between the co-polar and the cross-polar channels. Hyper-sharpening of Sentinel-2 RE bands, calculation of NAOC and modulation-based integration of Sentinel-1 polarimetric change features are applied to multitemporal datasets acquired before and after a fire event, over Mount Serra, in Italy. The optical change feature captures variations in the content of chlorophyll. The polarimetric SAR temporal change feature describes depolarization effects and changes in volumetric scattering of canopies. Their fusion shows an increased ability to highlight changes in vegetation status. In a performance comparison achieved by means of receiver operating characteristic (ROC) curves, the proposed change feature-based fusion approach surpasses a traditional area-based approach and the normalized burned ratio (NBR) index, which is widespread in the detection of burnt vegetation

    Wavelet Operators and Multiplicative Observation Models - Application to Change-Enhanced Regularization of SAR Image Time Series

    Get PDF
    This paper first provides statistical properties of wavelet operators when the observation model can be seen as the product of a deterministic piecewise regular function (signal) and a stationary random field (noise). This multiplicative observation model is analyzed in two standard frameworks by considering either (1) a direct wavelet transform of the model or (2) a log-transform of the model prior to wavelet decomposition. The paper shows that, in Framework (1), wavelet coefficients of the time series are affected by intricate correlation structures which affect the signal singularities. Framework (2) is shown to be associated with a multiplicative (or geometric) wavelet transform and the multiplicative interactions between wavelets and the model highlight both sparsity of signal changes near singularities (dominant coefficients) and decorrelation of speckle wavelet coefficients. The paper then derives that, for time series of synthetic aperture radar data, geometric wavelets represent a more intuitive and relevant framework for the analysis of smooth earth fields observed in the presence of speckle. From this analysis, the paper proposes a fast-and-concise geometric wavelet based method for joint change detection and regularization of synthetic aperture radar image time series. In this method, geometric wavelet details are first computed with respect to the temporal axis in order to derive generalized-ratio change-images from the time series. The changes are then enhanced and speckle is attenuated by using spatial bloc sigmoid shrinkage. Finally, a regularized time series is reconstructed from the sigmoid shrunken change-images. An application of this method highlights the relevancy of the method for change detection and regularization of SENTINEL-1A dual-polarimetric image time series over Chamonix-Mont-Blanc test site

    Wavelet Operators and Multiplicative Observation Models -Application to SAR Image Time Series Analysis

    Get PDF
    International audienceThis paper first provides statistical properties of wavelet operators when the observation model can be seen as the product of a deterministic piece-wise regular function (signal) and a stationary random field (noise). This multiplicative observation model is analyzed in two standard frameworks by considering either (1) a direct wavelet transform of the model or (2) a log-transform of the model prior to wavelet decomposition. The paper shows that, in Framework (1), wavelet coefficients of the time series are affected by intricate correlation structures which blur signal singularities. Framework (2) is shown to be associated with a multiplicative (or geometric) wavelet transform and the multiplicative interactions between wavelets and the model highlight both sparsity of signal changes near singularities (dominant coefficients) and decorre-lation of speckle wavelet coefficients. The paper then derives that, for time series of synthetic aperture radar data, geometric wavelets represent a more intuitive and relevant framework for the analysis of smooth earth fields observed in the presence of speckle. From this analysis, the paper proposes a fast-and-concise geometric wavelet based method for joint change detection and regularization of synthetic aperture radar image time series. In this method, geometric wavelet details are first computed with respect to the temporal axis in order to derive generalized-ratio change-images from the time series. The changes are then enhanced and speckle is attenuated by using spatial block sigmoid shrinkage. Finally, a regularized time series is reconstructed from the sigmoid shrunken change-images. Some applications highlight relevancy of the method for the analysis of SENTINEL-1A and TerraSAR-X image time series over Chamonix-Mont-Blanc
    corecore