60,096 research outputs found

    People tracking and re-identification by face recognition for RGB-D camera networks

    Get PDF
    This paper describes a face recognition-based people tracking and re-identification system for RGB-D camera networks. The system tracks people and learns their faces online to keep track of their identities even if they move out from the camera's field of view once. For robust people re-identification, the system exploits the combination of a deep neural network- based face representation and a Bayesian inference-based face classification method. The system also provides a predefined people identification capability: it associates the online learned faces with predefined people face images and names to know the people's whereabouts, thus, allowing a rich human-system interaction. Through experiments, we validate the re-identification and the predefined people identification capabilities of the system and show an example of the integration of the system with a mobile robot. The overall system is built as a Robot Operating System (ROS) module. As a result, it simplifies the integration with the many existing robotic systems and algorithms which use such middleware. The code of this work has been released as open-source in order to provide a baseline for the future publications in this field

    Classification of protein interaction sentences via gaussian processes

    Get PDF
    The increase in the availability of protein interaction studies in textual format coupled with the demand for easier access to the key results has lead to a need for text mining solutions. In the text processing pipeline, classification is a key step for extraction of small sections of relevant text. Consequently, for the task of locating protein-protein interaction sentences, we examine the use of a classifier which has rarely been applied to text, the Gaussian processes (GPs). GPs are a non-parametric probabilistic analogue to the more popular support vector machines (SVMs). We find that GPs outperform the SVM and na\"ive Bayes classifiers on binary sentence data, whilst showing equivalent performance on abstract and multiclass sentence corpora. In addition, the lack of the margin parameter, which requires costly tuning, along with the principled multiclass extensions enabled by the probabilistic framework make GPs an appealing alternative worth of further adoption

    Distributed Learning from Interactions in Social Networks

    Get PDF
    We consider a network scenario in which agents can evaluate each other according to a score graph that models some interactions. The goal is to design a distributed protocol, run by the agents, that allows them to learn their unknown state among a finite set of possible values. We propose a Bayesian framework in which scores and states are associated to probabilistic events with unknown parameters and hyperparameters, respectively. We show that each agent can learn its state by means of a local Bayesian classifier and a (centralized) Maximum-Likelihood (ML) estimator of parameter-hyperparameter that combines plain ML and Empirical Bayes approaches. By using tools from graphical models, which allow us to gain insight on conditional dependencies of scores and states, we provide a relaxed probabilistic model that ultimately leads to a parameter-hyperparameter estimator amenable to distributed computation. To highlight the appropriateness of the proposed relaxation, we demonstrate the distributed estimators on a social interaction set-up for user profiling.Comment: This submission is a shorter work (for conference publication) of a more comprehensive paper, already submitted as arXiv:1706.04081 (under review for journal publication). In this short submission only one social set-up is considered and only one of the relaxed estimators is proposed. Moreover, the exhaustive analysis, carried out in the longer manuscript, is completely missing in this versio

    Collaborative Deep Learning for Recommender Systems

    Full text link
    Collaborative filtering (CF) is a successful approach commonly used by many recommender systems. Conventional CF-based methods use the ratings given to items by users as the sole source of information for learning to make recommendation. However, the ratings are often very sparse in many applications, causing CF-based methods to degrade significantly in their recommendation performance. To address this sparsity problem, auxiliary information such as item content information may be utilized. Collaborative topic regression (CTR) is an appealing recent method taking this approach which tightly couples the two components that learn from two different sources of information. Nevertheless, the latent representation learned by CTR may not be very effective when the auxiliary information is very sparse. To address this problem, we generalize recent advances in deep learning from i.i.d. input to non-i.i.d. (CF-based) input and propose in this paper a hierarchical Bayesian model called collaborative deep learning (CDL), which jointly performs deep representation learning for the content information and collaborative filtering for the ratings (feedback) matrix. Extensive experiments on three real-world datasets from different domains show that CDL can significantly advance the state of the art
    corecore