4,903 research outputs found

    Assessing the reliability of adaptive power system protection schemes

    Get PDF
    Adaptive power system protection can be used to improve the performance of existing protection schemes under certain network conditions. However, their deployment in the field is impeded by their perceived inferior reliability compared to existing protection arrangements. Moreover, their validation can be problematic due to the perceived high likelihood of the occurrence of failure modes or incorrect setting selection with variable network conditions. Reliability (including risk assessment) is one of the decisive measures that can be used in the process of verifying adaptive protection scheme performance. This paper proposes a generic methodology for assessing the reliability of adaptive protection. The method involves the identification of initiating events and scenarios that lead to protection failures and quantification of the probability of the occurrence of each failure. A numerical example of the methodology for an adaptive distance protection scheme is provided

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Managing the Uncertainty Associated with Hydrogen Gas Hazards and Operability Issues in Nuclear Chemical Plants

    Get PDF
    The complex and diverse nature of reprocessing and decommissioning operations in existing nuclear chemical plants within the UK results in a variety of challenges. The challenges relate to the quantified risk from hydrogen explosions and how best to manage the associated uncertainties. Several knowledge gaps in terms of the Quantified Risk Assessment (QRA) of hydrogen hazards have been identified in this research work. These include radiolytic hydrogen explosions in sealed process pipes, the failure of ventilation systems used to dilute radiolytic hydrogen in process vessels, the decision uncertainty in installing additional hydrogen purge systems and the uncertainty associated with hold-up of hydrogen in radioactive sludges. The effect of a subsequent sudden release of the heldup hydrogen gas into a vessel ullage space presents a further knowledge gap. Nuclear decommissioning and reprocessing operations also result in operational risk knowledge gaps including the mixing behaviour of radioactive sludges, the performance of robotics for nuclear waste characterisation and control of nuclear fission products associated with solid wastes. Bayesian Belief Networks (BBNs) and Monte Carlo Simulation (MC) techniques have been deployed in this research work to address the identified knowledge gaps. These techniques provide a powerful means of uncertainty analysis of complex systems involving multiple interdependent variables such as those affecting nuclear decommissioning and reprocessing. Through the application of BBN and MC Simulation methodologies to a series of nuclear chemical plant case studies, new knowledge in decommissioning and reprocessing operations has been generated. This new knowledge relates to establishing a realistic quantified risk from hydrogen explosions and nuclear plant operability issues. New knowledge in terms of the key sensitivities affecting the quantified risk of hydrogen explosions and operability in nuclear environments as well as the optimum improvements necessary to mitigate such risks has also been gained

    Run-time risk management in adaptive ICT systems

    No full text
    We will present results of the SERSCIS project related to risk management and mitigation strategies in adaptive multi-stakeholder ICT systems. The SERSCIS approach involves using semantic threat models to support automated design-time threat identification and mitigation analysis. The focus of this paper is the use of these models at run-time for automated threat detection and diagnosis. This is based on a combination of semantic reasoning and Bayesian inference applied to run-time system monitoring data. The resulting dynamic risk management approach is compared to a conventional ISO 27000 type approach, and validation test results presented from an Airport Collaborative Decision Making (A-CDM) scenario involving data exchange between multiple airport service providers

    A Bayesian Approach to Sensor Placement and System Health Monitoring

    Get PDF
    System health monitoring and sensor placement are areas of great technical and scientific interest. Prognostics and health management of a complex system require multiple sensors to extract required information from the sensed environment, because no single sensor can obtain all the required information reliably at all times. The increasing costs of aging systems and infrastructures have become a major concern, and system health monitoring techniques can ensure increased safety and reliability of these systems. Similar concerns also exist for newly designed systems. The main objectives of this research were: (1) to find an effective way for optimal functional sensor placement under uncertainty, and (2) to develop a system health monitoring approach with both prognostic and diagnostic capabilities with limited and uncertain information sensing and monitoring points. This dissertation provides a functional/information --based sensor placement methodology for monitoring the health (state of reliability) of a system and utilizes it in a new system health monitoring approach. The developed sensor placement method is based on Bayesian techniques and is capable of functional sensor placement under uncertainty. It takes into account the uncertainty inherent in characteristics of sensors as well. It uses Bayesian networks for modeling and reasoning the uncertainties as well as for updating the state of knowledge for unknowns of interest and utilizes information metrics for sensor placement based on the amount of information each possible sensor placement scenario provides. A new system health monitoring methodology is also developed which is: (1) capable of assessing current state of a system's health and can predict the remaining life of the system (prognosis), and (2) through appropriate data processing and interpretation can point to elements of the system that have or are likely to cause system failure or degradation (diagnosis). It can also be set up as a dynamic monitoring system such that through consecutive time steps, the system sensors perform observations and send data to the Bayesian network for continuous health assessment. The proposed methodology is designed to answer important questions such as how to infer the health of a system based on limited number of monitoring points at certain subsystems (upward propagation); how to infer the health of a subsystem based on knowledge of the health of the main system (downward propagation); and how to infer the health of a subsystem based on knowledge of the health of other subsystems (distributed propagation)

    Expert Elicitation for Reliable System Design

    Full text link
    This paper reviews the role of expert judgement to support reliability assessments within the systems engineering design process. Generic design processes are described to give the context and a discussion is given about the nature of the reliability assessments required in the different systems engineering phases. It is argued that, as far as meeting reliability requirements is concerned, the whole design process is more akin to a statistical control process than to a straightforward statistical problem of assessing an unknown distribution. This leads to features of the expert judgement problem in the design context which are substantially different from those seen, for example, in risk assessment. In particular, the role of experts in problem structuring and in developing failure mitigation options is much more prominent, and there is a need to take into account the reliability potential for future mitigation measures downstream in the system life cycle. An overview is given of the stakeholders typically involved in large scale systems engineering design projects, and this is used to argue the need for methods that expose potential judgemental biases in order to generate analyses that can be said to provide rational consensus about uncertainties. Finally, a number of key points are developed with the aim of moving toward a framework that provides a holistic method for tracking reliability assessment through the design process.Comment: This paper commented in: [arXiv:0708.0285], [arXiv:0708.0287], [arXiv:0708.0288]. Rejoinder in [arXiv:0708.0293]. Published at http://dx.doi.org/10.1214/088342306000000510 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Improving the accuracy of transformer DGA diagnosis in the presence of conflicting evidence

    Get PDF
    Transformers are critical assets for the reliable and cost-effective operation of the power grid. Transformers may fail if condition monitoring does not identify degraded conditions in time. Dissolved Gas Analysis (DGA) focuses on the examination of the dissolved gasses in the transformer oil and there exist different methods for transformer fault diagnosis based on different analyses of the gassing levels. However, these methods can give conflicting results, and it is not always clear which model is most accurate in a given situation. This paper presents a novel evidence combination framework for DGA based on Bayesian networks. Bayesian network models embed expert knowledge along with learned data patterns and evidence combination which aids in the consistency of analysis. The effectiveness of the proposed framework is validated using the IEC TC 10 dataset with a maximum diagnosis accuracy of 88.3%

    Can we verify and intrinsically validate risk assessment results? What progress is being made to increase QRA trustworthiness?

    Get PDF
    PresentationThe purpose of a risk assessment is to make a decision whether the risk of a given situation is acceptable, and, if not, how we can reduce it to a tolerable level. For many cases, this can be done in a semi-quantitative fashion. For more complex or problematic cases a quantitative approach is required. Anybody who has been involved in such a study is aware of the difficulties and pitfalls. Despite proven software many choices of parameters must be made and many uncertainties remain. The thoroughness of the study can make quite a difference in the result. Independently, analysts can arrive at results that differ orders of magnitude, especially if uncertainties are not included. Because for important decisions on capital projects there are always proponents and opponents, there is often a tense situation in which conflict is looming. The paper will first briefly review a standard procedure introduced for safety cases on products that must provide more or less a guarantee that the risk of use is below a certain value. Next will be the various approaches how to deal with uncertainties in a quantitative risk assessment and the follow-on decision process. Over the last few years several new developments have been made to achieve, to a certain extent, a hold on so-called deep uncertainty. Expert elicitation and its limitations is another aspect. The paper will be concluded with some practical recommendations
    • …
    corecore