656 research outputs found

    An adaptive ensemble filter for heavy-tailed distributions: tuning-free inflation and localization

    Full text link
    Heavy tails is a common feature of filtering distributions that results from the nonlinear dynamical and observation processes as well as the uncertainty from physical sensors. In these settings, the Kalman filter and its ensemble version - the ensemble Kalman filter (EnKF) - that have been designed under Gaussian assumptions result in degraded performance. t-distributions are a parametric family of distributions whose tail-heaviness is modulated by a degree of freedom ν\nu. Interestingly, Cauchy and Gaussian distributions correspond to the extreme cases of a t-distribution for ν=1\nu = 1 and ν=∞\nu = \infty, respectively. Leveraging tools from measure transport (Spantini et al., SIAM Review, 2022), we present a generalization of the EnKF whose prior-to-posterior update leads to exact inference for t-distributions. We demonstrate that this filter is less sensitive to outlying synthetic observations generated by the observation model for small ν\nu. Moreover, it recovers the Kalman filter for ν=∞\nu = \infty. For nonlinear state-space models with heavy-tailed noise, we propose an algorithm to estimate the prior-to-posterior update from samples of joint forecast distribution of the states and observations. We rely on a regularized expectation-maximization (EM) algorithm to estimate the mean, scale matrix, and degree of freedom of heavy-tailed \textit{t}-distributions from limited samples (Finegold and Drton, arXiv preprint, 2014). Leveraging the conditional independence of the joint forecast distribution, we regularize the scale matrix with an l1l1 sparsity-promoting penalization of the log-likelihood at each iteration of the EM algorithm. By sequentially estimating the degree of freedom at each analysis step, our filter can adapt its prior-to-posterior update to the tail-heaviness of the data. We demonstrate the benefits of this new ensemble filter on challenging filtering problems.Comment: 28 pages, 9 figure

    Data Assimilation with Gaussian Mixture Models using the Dynamically Orthogonal Field Equations. Part I. Theory and Scheme

    Get PDF
    This work introduces and derives an efficient, data-driven assimilation scheme, focused on a time-dependent stochastic subspace, that respects nonlinear dynamics and captures non-Gaussian statistics as it occurs. The motivation is to obtain a filter that is applicable to realistic geophysical applications but that also rigorously utilizes the governing dynamical equations with information theory and learning theory for efficient Bayesian data assimilation. Building on the foundations of classical filters, the underlying theory and algorithmic implementation of the new filter are developed and derived. The stochastic Dynamically Orthogonal (DO) field equations and their adaptive stochastic subspace are employed to predict prior probabilities for the full dynamical state, effectively approximating the Fokker-Planck equation. At assimilation times, the DO realizations are fit to semiparametric Gaussian mixture models (GMMs) using the Expectation-Maximization algorithm and the Bayesian Information Criterion. Bayes’ Law is then efficiently carried out analytically within the evolving stochastic subspace. The resulting GMM-DO filter is illustrated in a very simple example. Variations of the GMM-DO filter are also provided along with comparisons with related schemes.United States. Office of Naval Research (Grant N00014-08-1-1097)United States. Office of Naval Research (Grant 00014-09-1-0676)United States. Office of Naval Research (Grant N00014-08-1-0586

    A Gaussian mixture ensemble transform filter

    Full text link
    We generalize the popular ensemble Kalman filter to an ensemble transform filter where the prior distribution can take the form of a Gaussian mixture or a Gaussian kernel density estimator. The design of the filter is based on a continuous formulation of the Bayesian filter analysis step. We call the new filter algorithm the ensemble Gaussian mixture filter (EGMF). The EGMF is implemented for three simple test problems (Brownian dynamics in one dimension, Langevin dynamics in two dimensions, and the three dimensional Lorenz-63 model). It is demonstrated that the EGMF is capable to track systems with non-Gaussian uni- and multimodal ensemble distributions

    A Stochastic Covariance Shrinkage Approach in Ensemble Transform Kalman Filtering

    Get PDF
    The Ensemble Kalman Filters (EnKF) employ a Monte-Carlo approach to represent covariance information, and are affected by sampling errors in operational settings where the number of model realizations is much smaller than the model state dimension. To alleviate the effects of these errors EnKF relies on model-specific heuristics such as covariance localization, which takes advantage of the spatial locality of correlations among the model variables. This work proposes an approach to alleviate sampling errors that utilizes a locally averaged-in-time dynamics of the model, described in terms of a climatological covariance of the dynamical system. We use this covariance as the target matrix in covariance shrinkage methods, and develop a stochastic covariance shrinkage approach where synthetic ensemble members are drawn to enrich both the ensemble subspace and the ensemble transformation

    A Gaussian Mixture Model Smoother for Continuous Nonlinear Stochastic Dynamical Systems: Theory and Scheme

    Get PDF
    Retrospective inference through Bayesian smoothing is indispensable in geophysics, with crucial applications in ocean and numerical weather estimation, climate dynamics, and Earth system modeling. However, dealing with the high-dimensionality and nonlinearity of geophysical processes remains a major challenge in the development of Bayesian smoothers. Addressing this issue, a novel subspace smoothing methodology for high-dimensional stochastic fields governed by general nonlinear dynamics is obtained. Building on recent Bayesian filters and classic Kalman smoothers, the fundamental equations and forward-backward algorithms of new Gaussian Mixture Model (GMM) smoothers are derived, for both the full state space and dynamic subspace. For the latter, the stochastic Dynamically Orthogonal (DO) field equations and their time-evolving stochastic subspace are employed to predict the prior subspace probabilities. Bayesian inference, both forward and backward in time, is then analytically carried out in the dominant stochastic subspace, after fitting semiparametric GMMs to joint subspace realizations. The theoretical properties, varied forms, and computational costs of the new GMM smoother equations are presented and discussed.United States. Office of Naval Research (N00014-09-1- 0676)United States. Office of Naval Research (N00014-14-1- 0476)United States. Office of Naval Research (N00014-13-1-0518)United States. Office of Naval Research ( N00014-14-1-0725

    State-of-the-art stochastic data assimilation methods for high-dimensional non-Gaussian problems

    Get PDF
    This paper compares several commonly used state-of-the-art ensemble-based data assimilation methods in a coherent mathematical notation. The study encompasses different methods that are applicable to high-dimensional geophysical systems, like ocean and atmosphere, and provide an uncertainty estimate. Most variants of Ensemble Kalman Filters, Particle Filters and second-order exact methods are discussed, including Gaussian Mixture Filters, while methods that require an adjoint model or a tangent linear formulation of the model are excluded. The detailed description of all the methods in a mathematically coherent way provides both novices and experienced researchers with a unique overview and new insight in the workings and relative advantages of each method, theoretically and algorithmically, even leading to new filters. Furthermore, the practical implementation details of all ensemble and particle filter methods are discussed to show similarities and differences in the filters aiding the users in what to use when. Finally, pseudo-codes are provided for all of the methods presented in this paper
    • …
    corecore