1,470 research outputs found

    Location-dependent information extraction for positioning

    Get PDF
    This paper presents an overview of current research investigations within the WHERE-2 Project with respect to location-dependent information extraction and how this information can be used towards the benefit of positioning. It is split into two main sections; the first one relies on non-radio means such as inertial sensors and prior knowledge about the environment geometry, which can be used in the form of map constraints to improve user positioning precision in indoor environments. The second section presents how location-specific radio information can be exploited in a more sophisticated way into advanced positioning algorithms. The intended solutions include exploitation of the slow fading dynamics in addition to the fast-fading parameters, adaptation of the system to its environment on both network and terminal sides and also how specific environmental properties such as the dielectric wall parameters can be extracted and thereafter used for more accurate fingerprinting database generation using Ray Tracing modelling methods. Most of the techniques presented herein rely on real-life measurements or experiments

    Indoor Space Classification Using Cascaded LSTM

    Get PDF
    Author's accepted manuscript.© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Indoor space classification is an important part of localization that helps in precise location extraction, which has been extensively utilized in industrial and domestic domain. There are various approaches that employ Bluetooth Low Energy (BLE), Wi-Fi, magnetic field, object detection, and Ultra Wide Band (UWB) for indoor space classification purposes. Many of the existing approaches need extensive pre-installed infrastructure, making the cost higher to obtain reasonable accuracy. Therefore, improvements are still required to increase the accuracy with minimum requirements of infrastructure. In this paper, we propose an approach to classify the indoor space using geomagnetic field (GMF) and radio signal strength (RSS) as the identity. The indoor space is an open big test bed divided into different indiscernible subspace. We collect GMF and RSS at each subspace and classify it using cascaded Long Short Term Memory (LSTM). The experimental results show that the accuracy is significantly improved when GMF and RSS are combined to make distinct features. In addition, we compare the performance of the proposed model with the state-of-the-art machine learning methods.acceptedVersio

    Indoor navigation systems based on data mining techniques in internet of things: a survey

    Full text link
    © 2018, Springer Science+Business Media, LLC, part of Springer Nature. Internet of Things (IoT) is turning into an essential part of daily life, and numerous IoT-based scenarios will be seen in future of modern cities ranging from small indoor situations to huge outdoor environments. In this era, navigation continues to be a crucial element in both outdoor and indoor environments, and many solutions have been provided in both cases. On the other side, recent smart objects have produced a substantial amount of various data which demands sophisticated data mining solutions to cope with them. This paper presents a detailed review of previous studies on using data mining techniques in indoor navigation systems for the loT scenarios. We aim to understand what type of navigation problems exist in different IoT scenarios with a focus on indoor environments and later on we investigate how data mining solutions can provide solutions on those challenges

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Smart Monitoring and Control in the Future Internet of Things

    Get PDF
    The Internet of Things (IoT) and related technologies have the promise of realizing pervasive and smart applications which, in turn, have the potential of improving the quality of life of people living in a connected world. According to the IoT vision, all things can cooperate amongst themselves and be managed from anywhere via the Internet, allowing tight integration between the physical and cyber worlds and thus improving efficiency, promoting usability, and opening up new application opportunities. Nowadays, IoT technologies have successfully been exploited in several domains, providing both social and economic benefits. The realization of the full potential of the next generation of the Internet of Things still needs further research efforts concerning, for instance, the identification of new architectures, methodologies, and infrastructures dealing with distributed and decentralized IoT systems; the integration of IoT with cognitive and social capabilities; the enhancement of the sensing–analysis–control cycle; the integration of consciousness and awareness in IoT environments; and the design of new algorithms and techniques for managing IoT big data. This Special Issue is devoted to advancements in technologies, methodologies, and applications for IoT, together with emerging standards and research topics which would lead to realization of the future Internet of Things
    corecore