15,659 research outputs found

    TeamSTEPPS and Organizational Culture

    Get PDF
    Patient safety issues remain despite several strategies developed for their deterrence. While many safety initiatives bring about improvement, they are repeatedly unsustainable and short-lived. The index hospital’s goal was to build an organizational culture within a groundwork that improves teamwork and continuing healthcare team engagement. Teamwork influences the efficiency of patient care, patient safety, and clinical outcomes, as it has been identified as an approach for enhancing collaboration, decreasing medical errors, and building a culture of safety in healthcare. The facility implemented Team Strategies and Tools to Enhance Performance and Patient Safety (TeamSTEPPS), an evidence-based framework which was used for team training to produce valuable and needed changes, facilitating modification of organizational culture, increasing patient safety compliance, or solving particular issues. This study aimed to identify the correlation between TeamSTEPPS enactment and improved organizational culture in the ambulatory care nursing department of a New York City public hospital

    Irish Ocean Climate and Ecosystem Status Report

    Get PDF
    Summary report for Irish Ocean Climate & Ecosystem Status Report also published here. This Irish Ocean Climate & Ecosystem Status Summary for Policymakers brings together the latest evidence of ocean change in Irish waters. The report is intended to summarise the current trends in atmospheric patterns, ocean warming, sea level rise, ocean acidification, plankton and fish distributions and abundance, and seabird population trends. The report represents a collaboration between marine researchers within the Marine Institute and others based in Ireland’s higher education institutes and public bodies. It includes authors from Met Éireann, Maynooth University, the University of Galway, the Atlantic Technological University, National Parks and Wildlife, Birdwatch Ireland, Trinity College Dublin, University College Dublin, Inland Fisheries Ireland, The National Water Forum, the Environmental Protection Agency, and the Dundalk Institute of Technology.This report is intended to summarise the current trends in Ireland’s ocean climate. Use has been made of archived marine data held by a range of organisations to elucidate some of the key trends observed in phenomena such as atmospheric changes, ocean warming, sea level rise, acidification, plankton and fish distributions and abundance, and seabirds. The report aims to summarise the key findings and recommendations in each of these areas as a guide to climate adaptation policy and for the public. It builds on the previous Ocean Climate & Ecosystem Status Report published in 2010. The report examines the recently published literature in each of the topic areas and combines this in many cases with analysis of new data sets including long-term time series to identify trends in essential ocean variables in Irish waters. In some cases, model projections of the likely future state of the atmosphere and ocean are presented under different climate emission scenarios.Marine Institut

    Deep learning for unsupervised domain adaptation in medical imaging: Recent advancements and future perspectives

    Full text link
    Deep learning has demonstrated remarkable performance across various tasks in medical imaging. However, these approaches primarily focus on supervised learning, assuming that the training and testing data are drawn from the same distribution. Unfortunately, this assumption may not always hold true in practice. To address these issues, unsupervised domain adaptation (UDA) techniques have been developed to transfer knowledge from a labeled domain to a related but unlabeled domain. In recent years, significant advancements have been made in UDA, resulting in a wide range of methodologies, including feature alignment, image translation, self-supervision, and disentangled representation methods, among others. In this paper, we provide a comprehensive literature review of recent deep UDA approaches in medical imaging from a technical perspective. Specifically, we categorize current UDA research in medical imaging into six groups and further divide them into finer subcategories based on the different tasks they perform. We also discuss the respective datasets used in the studies to assess the divergence between the different domains. Finally, we discuss emerging areas and provide insights and discussions on future research directions to conclude this survey.Comment: Under Revie

    Using machine learning to predict pathogenicity of genomic variants throughout the human genome

    Get PDF
    Geschätzt mehr als 6.000 Erkrankungen werden durch Veränderungen im Genom verursacht. Ursachen gibt es viele: Eine genomische Variante kann die Translation eines Proteins stoppen, die Genregulation stören oder das Spleißen der mRNA in eine andere Isoform begünstigen. All diese Prozesse müssen überprüft werden, um die zum beschriebenen Phänotyp passende Variante zu ermitteln. Eine Automatisierung dieses Prozesses sind Varianteneffektmodelle. Mittels maschinellem Lernen und Annotationen aus verschiedenen Quellen bewerten diese Modelle genomische Varianten hinsichtlich ihrer Pathogenität. Die Entwicklung eines Varianteneffektmodells erfordert eine Reihe von Schritten: Annotation der Trainingsdaten, Auswahl von Features, Training verschiedener Modelle und Selektion eines Modells. Hier präsentiere ich ein allgemeines Workflow dieses Prozesses. Dieses ermöglicht es den Prozess zu konfigurieren, Modellmerkmale zu bearbeiten, und verschiedene Annotationen zu testen. Der Workflow umfasst außerdem die Optimierung von Hyperparametern, Validierung und letztlich die Anwendung des Modells durch genomweites Berechnen von Varianten-Scores. Der Workflow wird in der Entwicklung von Combined Annotation Dependent Depletion (CADD), einem Varianteneffektmodell zur genomweiten Bewertung von SNVs und InDels, verwendet. Durch Etablierung des ersten Varianteneffektmodells für das humane Referenzgenome GRCh38 demonstriere ich die gewonnenen Möglichkeiten Annotationen aufzugreifen und neue Modelle zu trainieren. Außerdem zeige ich, wie Deep-Learning-Scores als Feature in einem CADD-Modell die Vorhersage von RNA-Spleißing verbessern. Außerdem werden Varianteneffektmodelle aufgrund eines neuen, auf Allelhäufigkeit basierten, Trainingsdatensatz entwickelt. Diese Ergebnisse zeigen, dass der entwickelte Workflow eine skalierbare und flexible Möglichkeit ist, um Varianteneffektmodelle zu entwickeln. Alle entstandenen Scores sind unter cadd.gs.washington.edu und cadd.bihealth.org frei verfügbar.More than 6,000 diseases are estimated to be caused by genomic variants. This can happen in many possible ways: a variant may stop the translation of a protein, interfere with gene regulation, or alter splicing of the transcribed mRNA into an unwanted isoform. It is necessary to investigate all of these processes in order to evaluate which variant may be causal for the deleterious phenotype. A great help in this regard are variant effect scores. Implemented as machine learning classifiers, they integrate annotations from different resources to rank genomic variants in terms of pathogenicity. Developing a variant effect score requires multiple steps: annotation of the training data, feature selection, model training, benchmarking, and finally deployment for the model's application. Here, I present a generalized workflow of this process. It makes it simple to configure how information is converted into model features, enabling the rapid exploration of different annotations. The workflow further implements hyperparameter optimization, model validation and ultimately deployment of a selected model via genome-wide scoring of genomic variants. The workflow is applied to train Combined Annotation Dependent Depletion (CADD), a variant effect model that is scoring SNVs and InDels genome-wide. I show that the workflow can be quickly adapted to novel annotations by porting CADD to the genome reference GRCh38. Further, I demonstrate the integration of deep-neural network scores as features into a new CADD model, improving the annotation of RNA splicing events. Finally, I apply the workflow to train multiple variant effect models from training data that is based on variants selected by allele frequency. In conclusion, the developed workflow presents a flexible and scalable method to train variant effect scores. All software and developed scores are freely available from cadd.gs.washington.edu and cadd.bihealth.org

    Human wellbeing responses to species’ traits

    Get PDF
    People rely on well-functioning ecosystems to provide critical services that underpin human health and wellbeing. Consequently, biodiversity loss has profound negative implications for humanity. Human-biodiversity interactions can deliver individual-level wellbeing gains, equating to substantial healthcare cost-savings when scaled-up across populations. However, critical questions remain about which species and/or traits (e.g. colours, sounds, smells) elicit wellbeing responses. The traits that influence wellbeing can be considered ‘effect’ traits. Using techniques from community ecology, we analyse a database of species’ effect traits articulated by people, to identify those that generate different types of wellbeing (physical, emotional, cognitive, social, spiritual and ‘global’ wellbeing, the latter being akin to ‘whole-person health’). Effect traits have a predominately positive impact on wellbeing, influenced by the identity and taxonomic kingdom of each species. Different sets of effect traits deliver different types of wellbeing. However, traits cannot be considered independently of species because multiple traits can be supported by a single species. Indeed, we find numerous effect traits from across the ecological community can elicit multiple types of wellbeing, illustrating the complexity of biodiversity experiences. Our empirical approach can help implement interdisciplinary thinking for biodiversity conservation and nature-based public health interventions designed to support human wellbeing

    Optical Remote Sensing of Oil Spills by using Machine Learning Methods in the Persian Gulf: A Multi-Class Approach

    Get PDF
    Marine oil spills are harmful for the environment and costly for society. Coastal areas are particularly vulnerable since they provide habitats for organisms, animals and marine ecosystems. This thesis studied machine learning methods to classify thick oil in a multi-class case, using remotely sensed multi-spectral data in the Persian Gulf. The study area covers a large area between United Arab Emirates (UAE) and Iran. The dataset is extracted from 10 Sentinel-2 tiles on six spectral bands between 492 nm to 2202 nm. These images were annotated for four classes, namely thick oil, thin oil, ocean water and turbid water by using the Bonn Agreement to analyse true color composite images. A variety of machine learning methods were trained and evaluated using this dataset. Then a robustness evaluation was done by using selected machine learning methods on an independent dataset. Initially multiple machine learning methods were included; three decision trees, six K-Nearest Neighbor (KNN) models, two Artificial Neural Network (ANN) models, two Naive bayes models, and two discriminant models. Two KNN models and two ANN models were then picked for further evaluation. The results show that the fine KNN approach with two nearest neighbors had the best performance based on the computed statistical measures. However, the robustness evaluation showed that the tri-layered NN performed better. This thesis has shown that supervised machine learning with a multi-class approach can be used for oil spill monitoring using multi-spectral remote sensing data in the Persian Gulf

    Machine learning approach towards predicting turbulent fluid flow using convolutional neural networks

    Get PDF
    Using convolutional neural networks, we present a novel method for predicting turbulent fluid flow through an array of obstacles in this thesis. In recent years, machine learning has exploded in popularity due to its ability to create accurate data driven models and the abundance of available data. In an attempt to understand the characteristics of turbulent fluid flow, we utilise a novel convolutional autoencoder neural network to predict the first ten POD modes of turbulent fluid flow. We find that the model is able to predict the first two POD modes well although and with less accuracy for the remaining eight POD modes. In addition, we find that the ML-predicted POD modes are accurate enough to be used to reconstruct turbulent flow that adequately captures the large-scale details of the original simulation

    A review of abnormal behavior detection in activities of daily living

    Get PDF
    Abnormal behavior detection (ABD) systems are built to automatically identify and recognize abnormal behavior from various input data types, such as sensor-based and vision-based input. As much as the attention received for ABD systems, the number of studies on ABD in activities of daily living (ADL) is limited. Owing to the increasing rate of elderly accidents in the home compound, ABD in ADL research should be given as much attention to preventing accidents by sending out signals when abnormal behavior such as falling is detected. In this study, we compare and contrast the formation of the ABD system in ADL from input data types (sensor-based input and vision-based input) to modeling techniques (conventional and deep learning approaches). We scrutinize the public datasets available and provide solutions for one of the significant issues: the lack of datasets in ABD in ADL. This work aims to guide new research to understand the field of ABD in ADL better and serve as a reference for future study of better Ambient Assisted Living with the growing smart home trend

    Diffusion Schr\"odinger Bridge Matching

    Full text link
    Solving transport problems, i.e. finding a map transporting one given distribution to another, has numerous applications in machine learning. Novel mass transport methods motivated by generative modeling have recently been proposed, e.g. Denoising Diffusion Models (DDMs) and Flow Matching Models (FMMs) implement such a transport through a Stochastic Differential Equation (SDE) or an Ordinary Differential Equation (ODE). However, while it is desirable in many applications to approximate the deterministic dynamic Optimal Transport (OT) map which admits attractive properties, DDMs and FMMs are not guaranteed to provide transports close to the OT map. In contrast, Schr\"odinger bridges (SBs) compute stochastic dynamic mappings which recover entropy-regularized versions of OT. Unfortunately, existing numerical methods approximating SBs either scale poorly with dimension or accumulate errors across iterations. In this work, we introduce Iterative Markovian Fitting, a new methodology for solving SB problems, and Diffusion Schr\"odinger Bridge Matching (DSBM), a novel numerical algorithm for computing IMF iterates. DSBM significantly improves over previous SB numerics and recovers as special/limiting cases various recent transport methods. We demonstrate the performance of DSBM on a variety of problems

    Dietary plasticity linked to divergent growth trajectories in a critically endangered sea turtle

    Get PDF
    Foraging habitat selection and diet quality are key factors that influence individual fitness and meta-population dynamics through effects on demographic rates. There is growing evidence that sea turtles exhibit regional differences in somatic growth linked to alternative dispersal patterns during the oceanic life stage. Yet, the role of habitat quality and diet in shaping somatic growth rates is poorly understood. Here, we evaluate whether diet variation is linked to regional growth variation in hawksbill sea turtles (Eretmochelys imbricata), which grow significantly slower in Texas, United States versus Florida, United States, through novel integrations of skeletal growth, gastrointestinal content (GI), and bulk tissue and amino acid (AA)-specific stable nitrogen (δ15N) and carbon (δ13C) isotope analyses. We also used AA δ15N ΣV values (heterotrophic bacterial re-synthesis index) and δ13C essential AA (δ13CEAA) fingerprinting to test assumptions about the energy sources fueling hawksbill food webs regionally. GI content analyses, framed within a global synthesis of hawksbill dietary plasticity, revealed that relatively fast-growing hawksbills stranded in Florida conformed with assumptions of extensive spongivory for this species. In contrast, relatively slow-growing hawksbills stranded in Texas consumed considerable amounts of non-sponge invertebrate prey and appear to forage higher in the food web as indicated by isotopic niche metrics and higher AA δ15N-based trophic position estimates internally indexed to baseline nitrogen isotope variation. However, regional differences in estimated trophic position may also be driven by unique isotope dynamics of sponge food webs. AA δ15N ΣV values and δ13CEAA fingerprinting indicated minimal bacterial re-synthesis of organic matter (ΣV < 2) and that eukaryotic microalgae were the primary energy source supporting hawksbill food webs. These findings run contrary to assumptions that hawksbill diets predominantly comprise high microbial abundance sponges expected to primarily derive energy from bacterial symbionts. Our findings suggest alternative foraging patterns could underlie regional variation in hawksbill growth rates, as divergence from typical sponge prey might correspond with increased energy expenditure and reduced foraging success or diet quality. As a result, differential dispersal patterns may infer substantial individual and population fitness costs and represent a previously unrecognized challenge to the persistence and recovery of this critically endangered species
    • …
    corecore