2,577 research outputs found

    A Bayesian approach to calibrating hydrogen flame kinetics using many experiments and parameters

    Get PDF
    First-principles Markov Chain Monte Carlo sampling is used to investigate uncertainty quantification and uncertainty propagation in parameters describing hydrogen kinetics. Specifically, we sample the posterior distribution of thirty-one parameters focusing on the H2O2 and HO2 reactions resulting from conditioning on ninety-one experiments. Established literature values are used for the remaining parameters in the mechanism. The samples are computed using an affine invariant sampler starting with broad, noninformative priors. Autocorrelation analysis shows that O(1M) samples are sufficient to obtain a reasonable sampling of the posterior. The resulting distribution identifies strong positive and negative correlations and several non-Gaussian characteristics. Using samples drawn from the posterior, we investigate the impact of parameter uncertainty on the prediction of two more complex flames: a 2D premixed flame kernel and the ignition of a hydrogen jet issuing into a heated chamber. The former represents a combustion regime similar to the target experiments used to calibrate the mechanism and the latter represents a different combustion regime. For the premixed flame, the net amount of product after a given time interval has a standard deviation of less than 2% whereas the standard deviation of the ignition time for the jet is more than 10%. The samples used for these studies are posted online. These results indicate the degree to which parameters consistent with the target experiments constrain predicted behavior in different combustion regimes. This process provides a framework for both identifying reactions for further study from candidate mechanisms as well as combining uncertainty quantification and propagation to, ultimately, tie uncertainty in laboratory flame experiments to uncertainty in end-use numerical predictions of more complicated scenarios

    Do Deep Generative Models Know What They Don't Know?

    Full text link
    A neural network deployed in the wild may be asked to make predictions for inputs that were drawn from a different distribution than that of the training data. A plethora of work has demonstrated that it is easy to find or synthesize inputs for which a neural network is highly confident yet wrong. Generative models are widely viewed to be robust to such mistaken confidence as modeling the density of the input features can be used to detect novel, out-of-distribution inputs. In this paper we challenge this assumption. We find that the density learned by flow-based models, VAEs, and PixelCNNs cannot distinguish images of common objects such as dogs, trucks, and horses (i.e. CIFAR-10) from those of house numbers (i.e. SVHN), assigning a higher likelihood to the latter when the model is trained on the former. Moreover, we find evidence of this phenomenon when pairing several popular image data sets: FashionMNIST vs MNIST, CelebA vs SVHN, ImageNet vs CIFAR-10 / CIFAR-100 / SVHN. To investigate this curious behavior, we focus analysis on flow-based generative models in particular since they are trained and evaluated via the exact marginal likelihood. We find such behavior persists even when we restrict the flows to constant-volume transformations. These transformations admit some theoretical analysis, and we show that the difference in likelihoods can be explained by the location and variances of the data and the model curvature. Our results caution against using the density estimates from deep generative models to identify inputs similar to the training distribution until their behavior for out-of-distribution inputs is better understood.Comment: ICLR 201
    • …
    corecore