663 research outputs found

    Wireless body sensor networks for health-monitoring applications

    Get PDF
    This is an author-created, un-copyedited version of an article accepted for publication in Physiological Measurement. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0967-3334/29/11/R01

    Vital Signs Monitoring in Human Body

    Get PDF
    Vital signs monitoring system embeds the data acquisition of vital signs such as ECG, respiration rate, temperature and glucose level in the blood of the patient. In this work, a system is designed for acquiring and monitoring several vital body parameters. These signals are transmitted to the user through Wi-Fi. The device receives the body temperature reading from standard thermometer and the glucose level in the blood from standard Glucometer via Bluetooth. The ECG, Respiration rate, Temperature readings and Glucose level readings are processed using ARM microprocessor and transmitted to the receiver such as Personal computer/Mobile/Tab through Wi-Fi module. It is a wearable battery equipped device which allows the user to operate effortlessly. It also includes the Beeper/Audio codec to signal or alert the user when abnormal ECG or respiration rate is sensed. All these can also be visualized through LCD display. DOI: 10.17762/ijritcc2321-8169.15057

    Ubiquitous Computing for Remote Cardiac Patient Monitoring: A Survey

    Get PDF
    New wireless technologies, such as wireless LAN and sensor networks, for telecardiology purposes give new possibilities for monitoring vital parameters with wearable biomedical sensors, and give patients the freedom to be mobile and still be under continuous monitoring and thereby better quality of patient care. This paper will detail the architecture and quality-of-service (QoS) characteristics in integrated wireless telecardiology platforms. It will also discuss the current promising hardware/software platforms for wireless cardiac monitoring. The design methodology and challenges are provided for realistic implementation

    Medical microprocessor systems

    Get PDF
    The practical classes and laboratory work in the discipline "Medical microprocessor systems", performed using software in the programming environment of microprocessors Texas Instruments (Code Composer Studio) and using of digital microprocessors of the Texas Instruments DSK6400 family, and models of electrical equipment in the environment of graphical programming LabVIEW 2010.Лабораторний практикум з програмування та побудови медичних мікропроцесорних систем, який викладено у навчальному посібнику допомагає накопичувати й ефективно використовувати отриману інформацію з теоретичного курсу на всіх стадіях навчального процесу, що є важливим для підготовки магістрів та необхідною ланкою у науковому пізнанні практичних основ біомедичної електроніки.The laboratory workshop on the programming and construction of medical microprocessor systems, which is outlined in the tutorial, helps to accumulate and effectively use the information obtained from a theoretical course at all stages of the educational process, which is important for the preparation of masters and a necessary link in the scientific knowledge of the practical basics of biomedicine.Лабораторный практикум по программированию и построению медицинских микропроцессорных систем, который изложен в учебном пособии помогает накапливать и эффективно использовать полученную информацию из теоретического курса на всех стадиях учебного процесса, что важно для подготовки магистров и является необходимым звеном в научном познании практических основ биомедицинской электроники

    On the Capability of Smartphones to Perform as Communication Gateways in Medical Wireless Personal Area Networks

    Get PDF
    This paper evaluates and characterizes the technical performance of medical wireless personal area networks (WPANs) that are based on smartphones. For this purpose, a prototype of a health telemonitoring system is presented. The prototype incorporates a commercial Android smartphone, which acts as a relay point, or “gateway”, between a set of wireless medical sensors and a data server. Additionally, the paper investigates if the conventional capabilities of current commercial smartphones can be affected by their use as gateways or “Holters” in health monitoring applications. Specifically, the profiling has focused on the CPU and power consumption of the mobile devices. These metrics have been measured under several test conditions modifying the smartphone model, the type of sensors connected to the WPAN, the employed Bluetooth profile (SPP (serial port profile) or HDP (health device profile)), the use of other peripherals, such as a GPS receiver, the impact of the use of theWi-Fi interface or the employed method to encode and forward the data that are collected from the sensors.Ministerio de Educación y Ciencia TEC2009-13763-C02-0

    Ultra low power wearable sleep diagnostic systems

    Get PDF
    Sleep disorders are studied using sleep study systems called Polysomnography that records several biophysical parameters during sleep. However, these are bulky and are typically located in a medical facility where patient monitoring is costly and quite inefficient. Home-based portable systems solve these problems to an extent but they record only a minimal number of channels due to limited battery life. To surmount this, wearable sleep system are desired which need to be unobtrusive and have long battery life. In this thesis, a novel sleep system architecture is presented that enables the design of an ultra low power sleep diagnostic system. This architecture is capable of extending the recording time to 120 hours in a wearable system which is an order of magnitude improvement over commercial wearable systems that record for about 12 hours. This architecture has in effect reduced the average power consumption of 5-6 mW per channel to less than 500 uW per channel. This has been achieved by eliminating sampled data architecture, reducing the wireless transmission rate and by moving the sleep scoring to the sensors. Further, ultra low power instrumentation amplifiers have been designed to operate in weak inversion region to support this architecture. A 40 dB chopper-stabilised low power instrumentation amplifiers to process EEG were designed and tested to operate from 1.0 V consuming just 3.1 uW for peak mode operation with DC servo loop. A 50 dB non-EEG amplifier continuous-time bandpass amplifier with a consumption of 400 nW was also fabricated and tested. Both the amplifiers achieved a high CMRR and impedance that are critical for wearable systems. Combining these amplifiers with the novel architecture enables the design of an ultra low power sleep recording system. This reduces the size of the battery required and hence enables a truly wearable system.Open Acces

    Wireless sensor network for health monitoring

    Get PDF
    Wireless Sensor Network (WSN) is becoming a significant enabling technology for a wide variety of applications. Recent advances in WSN have facilitated the realization of pervasive health monitoring for both homecare and hospital environments. Current technological advances in sensors, power-efficient integrated circuits, and wireless communication have allowed the development of miniature, lightweight, low-cost, and smart physiological sensor nodes. These nodes are capable of sensing, processing, and communicating one or more vital signs. Furthermore, they can be used in wireless personal area networks (WPANs) or wireless body sensor networks (WBSNs) for health monitoring. Many studies were performed and/or are under way in order to develop flexible, reliable, secure, real-time, and power-efficient WBSNs suitable for healthcare applications. To efficiently control and monitor a patient’s status as well as to reduce the cost of power and maintenance, IEEE 802.15.4/ZigBee, a communication standard for low-power wireless communication, is developed as a new efficient technology in health monitoring systems. The main contribution of this dissertation is to provide a modeling, analysis, and design framework for WSN health monitoring systems. This dissertation describes the applications of wireless sensor networks in the healthcare area and discusses the related issues and challenges. The main goal of this study is to evaluate the acceptance of the current wireless standard for enabling WSNs for healthcare monitoring in real environment. Its focus is on IEEE 802.15.4/ZigBee protocols combined with hardware and software platforms. Especially, it focuses on Carrier Sense Multiple Access with Collision Avoidance mechanism (CSMA/CA) algorithms for reliable communication in multiple accessing networks. The performance analysis metrics are established through measured data and mathematical analysis. This dissertation evaluates the network performance of the IEEE 802.15.4 unslotted CSMA/CA mechanism for different parameter settings through analytical modeling and simulation. For this protocol, a Markov chain model is used to derive the analytical expression of normalized packet transmission, reliability, channel access delay, and energy consumption. This model is used to describe the stochastic behavior of random access and deterministic behavior of IEEE 802.15.4 CSMA/CA. By using it, the different aspects of health monitoring can be analyzed. The sound transmission of heart beat with other smaller data packet transmission is studied. The obtained theoretical analysis and simulation results can be used to estimate and design the high performance health monitoring systems

    A Symbian-based mobile solution for intra-body temperature monitoring

    Get PDF
    Copyright © [2010] IEEE. Reprinted from 12th IEEE International Conference on e-Health Networking, Applications and Services . ISBN: 978-1-4244-6374-9. This material is posted here with permission of the IEEE. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.”Biofeedback data acquisition is an extremely important task in body sensor networks (BSNs). Data collected by sensors need to be processed in order to be shown in an easy and meaningful way for the user. The use of mobile devices may support and offer new user experiences. When connected to a BSN they can aggregate and process data collected by each sensor, providing a mobile solution for a healthcare system. This mobility offers a better patients' quality of life allowing a regular daily routine and always under monitoring. This paper proposes a Symbian-based mobile solution for intra-body temperature monitoring. Mobile device connects wirelessly to an intra-vaginal temperature sensor and interacts with sensor for temperature data collection and monitoring. This system helps women to detect their fertile and ovulation periods by the increasing of their intra-vaginal temperature. The mobile system was tested and validated with success and it is available for regular use

    A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions

    Get PDF
    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted
    corecore