51 research outputs found

    Authentication Scheme for Flexible Charging and Discharging of Mobile Vehicles in the V2G Networks

    Get PDF
    Navigating security and privacy challenges is one of the crucial requirements in the vehicle-to-grid (V2G) network. Since electric vehicles (EVs) need to provide their private information to aggregators/servers when charging/discharging at different charging stations, privacy of the vehicle owners can be compromised if the information is misused, traced, or revealed. In a wide V2G network, where vehicles can move outside of their home network to visiting networks, security and privacy become even more challenging due to untrusted entities in the visiting networks. Although some privacy-preserving solutions were proposed in the literature to tackle this problem, they do not protect against well-known security attacks and generate a huge overhead. Therefore, we propose a mutual authentication scheme to preserve privacy of the EV's information from aggregators/servers in the home as well as distributed visiting V2G networks. Our scheme, based on a bilinear pairing technique with an accumulator performing batch verification, yields higher system efficiency, defeats various security attacks, and maintains untraceability, forward privacy, and identity anonymity. A performance analysis shows that our scheme, in comparison with the existing solutions, significantly generates lower communication and computation overheads in the home and centralized V2G networks, and comparable overheads in the distributed visiting V2G networks

    Security and privacy issues of physical objects in the IoT: Challenges and opportunities

    Get PDF
    In the Internet of Things (IoT), security and privacy issues of physical objects are crucial to the related applications. In order to clarify the complicated security and privacy issues, the life cycle of a physical object is divided into three stages of pre-working, in-working, and post-working. On this basis, a physical object-based security architecture for the IoT is put forward. According to the security architecture, security and privacy requirements and related protecting technologies for physical objects in different working stages are analyzed in detail. Considering the development of IoT technologies, potential security and privacy challenges that IoT objects may face in the pervasive computing environment are summarized. At the same time, possible directions for dealing with these challenges are also pointed out

    Authentication and Authorization Scheme for Various User-Roles and Devices in Smart Grid

    Get PDF
    The smart grid, as the next generation of the power grid, is characterized by employing many different types of intelligent devices, such as intelligent electronic devices located at substations, smart meters positioned in the home area network, and outdoor field equipment deployed in the fields. Also, there are various users in the smart grid network, including customers, operators, maintenance personnel, and etc., who use these devices for various purposes. Therefore, a secure and efficient mutual authentication and authorization scheme is needed in the smart grid to prevent various insider and outsider attacks on many different devices. In this paper, we propose an authentication and authorization scheme for mitigating outsider and insider threats in the smart grid by verifying the user authorization and performing the user authentication together whenever a user accesses the devices. The proposed scheme computes each user-role dynamically using an attribute-based access control and verifies the identity of user together with the device. Security and performance analysis show that the proposed scheme resists various insider as well as outsider attacks, and is more efficient in terms of communication and computation costs in comparison with the existing schemes. The correctness of the proposed scheme is also proved using BAN-Logic and Proverif
    • …
    corecore