6 research outputs found

    Signals and Images in Sea Technologies

    Get PDF
    Life below water is the 14th Sustainable Development Goal (SDG) envisaged by the United Nations and is aimed at conserving and sustainably using the oceans, seas, and marine resources for sustainable development. It is not difficult to argue that signals and image technologies may play an essential role in achieving the foreseen targets linked to SDG 14. Besides increasing the general knowledge of ocean health by means of data analysis, methodologies based on signal and image processing can be helpful in environmental monitoring, in protecting and restoring ecosystems, in finding new sensor technologies for green routing and eco-friendly ships, in providing tools for implementing best practices for sustainable fishing, as well as in defining frameworks and intelligent systems for enforcing sea law and making the sea a safer and more secure place. Imaging is also a key element for the exploration of the underwater world for various scopes, ranging from the predictive maintenance of sub-sea pipelines and other infrastructure projects, to the discovery, documentation, and protection of sunken cultural heritage. The scope of this Special Issue encompasses investigations into techniques and ICT approaches and, in particular, the study and application of signal- and image-based methods and, in turn, exploration of the advantages of their application in the previously mentioned areas

    Jamming Effects on Hybrid Multistatic Radar Network Range and Velocity Estimation Errors

    Get PDF
    This research studies the effects of three noise jamming techniques on the performance of a hybrid multistatic radar network in a selection of different electronic warfare (EW) situations. The performance metrics investigated are the range and velocity estimation errors found using the Cramér-Rao lower bounds (CRLBs). The hybrid multistatic network simulated is comprised of a single active radar transmitter, three illuminators of opportunity (IO), a receiver co-located at the active transmitter site, and two separately located silent receivers. Each IO transmits at a unique frequency band commonly used for civilian applications, including Digital Video Broadcasting-Terrestrial (DVB-T), Digital Audio Broadcasting (DAB), and FM radio. Each receiver is capable of receiving signals at all three IO frequency bands as well as the operating frequency band of the active radar transmitter. The investigations included compare the performance of the network at detecting a single flying target under conditions where different combinations of jammer type, operating mode, directivity, and number of jammers operating are used. The performance degradation of the system compared to operation in a non-contested environment is determined and a comparison between the performance of the hybrid multistatic radar with that achievable by a monostatic radar and an active-only multistatic radar network within a selection of contested scenarios is made. Results show that the use of spatially distributed nodes and frequency diversity within the system enable greater theoretical functionality in the presence of jamming over conventional radar systems

    A Barrage Jamming Strategy Based on CRB Maximization against Distributed MIMO Radar

    No full text
    Distributed multiple input multiple output (MIMO) radar has attracted much attention for its improved detection and estimation performance as well as enhanced electronic counter-counter measures (ECCM) ability. To protect the target from being detected and tracked by such radar, we consider a barrage jamming strategy towards a distributed MIMO. We first derive the Cramer−Rao bound (CRB) of target parameters estimation using a distributed MIMO under barrage jamming environments. We then set maximizing the CRB as the criterion for jamming resource allocation, aiming at degrading the accuracy of target parameters estimation. Due to the non-convexity of the CRB maximizing problem, particle swarm optimization is used to solve the problem. Simulation results demonstrate the advantages of the proposed strategy over traditional jamming methods

    A Barrage Jamming Strategy Based on CRB Maximization against Distributed MIMO Radar

    No full text
    Distributed multiple input multiple output (MIMO) radar has attracted much attention for its improved detection and estimation performance as well as enhanced electronic counter-counter measures (ECCM) ability. To protect the target from being detected and tracked by such radar, we consider a barrage jamming strategy towards a distributed MIMO. We first derive the Cramer–Rao bound (CRB) of target parameters estimation using a distributed MIMO under barrage jamming environments. We then set maximizing the CRB as the criterion for jamming resource allocation, aiming at degrading the accuracy of target parameters estimation. Due to the non-convexity of the CRB maximizing problem, particle swarm optimization is used to solve the problem. Simulation results demonstrate the advantages of the proposed strategy over traditional jamming methods
    corecore