60 research outputs found

    The Virtual Block Interface: A Flexible Alternative to the Conventional Virtual Memory Framework

    Full text link
    Computers continue to diversify with respect to system designs, emerging memory technologies, and application memory demands. Unfortunately, continually adapting the conventional virtual memory framework to each possible system configuration is challenging, and often results in performance loss or requires non-trivial workarounds. To address these challenges, we propose a new virtual memory framework, the Virtual Block Interface (VBI). We design VBI based on the key idea that delegating memory management duties to hardware can reduce the overheads and software complexity associated with virtual memory. VBI introduces a set of variable-sized virtual blocks (VBs) to applications. Each VB is a contiguous region of the globally-visible VBI address space, and an application can allocate each semantically meaningful unit of information (e.g., a data structure) in a separate VB. VBI decouples access protection from memory allocation and address translation. While the OS controls which programs have access to which VBs, dedicated hardware in the memory controller manages the physical memory allocation and address translation of the VBs. This approach enables several architectural optimizations to (1) efficiently and flexibly cater to different and increasingly diverse system configurations, and (2) eliminate key inefficiencies of conventional virtual memory. We demonstrate the benefits of VBI with two important use cases: (1) reducing the overheads of address translation (for both native execution and virtual machine environments), as VBI reduces the number of translation requests and associated memory accesses; and (2) two heterogeneous main memory architectures, where VBI increases the effectiveness of managing fast memory regions. For both cases, VBI significanttly improves performance over conventional virtual memory

    Dynamically tunable memory hierarchy

    Get PDF
    Journal ArticleThe widespread use of repeaters in long wires creates the possibility of dynamically sizing regular on-chip structures. We present a tunable cache and translation lookaside buffer (TLB) hierarchy that leverages repeater insertion to dynamically trade off size for speed and power consumption on a per-application phase basis using a novel configuration management algorithm. In comparison to a conventional design that is fixed at a single design point targeted to the average application, the dynamically tunable cache and TLB hierarchy can be tailored to the needs of each application phase. The configuration algorithm dynamically detects phase changes and selects a configuration based on the application's ability to tolerate different hit and miss latencies in order to improve the memory energy-delay product. We evaluate the performance and energy consumption of our approach and project the effects of technology scaling trends on our design

    A Survey of Techniques for Architecting TLBs

    Get PDF
    “Translation lookaside buffer” (TLB) caches virtual to physical address translation information and is used in systems ranging from embedded devices to high-end servers. Since TLB is accessed very frequently and a TLB miss is extremely costly, prudent management of TLB is important for improving performance and energy efficiency of processors. In this paper, we present a survey of techniques for architecting and managing TLBs. We characterize the techniques across several dimensions to highlight their similarities and distinctions. We believe that this paper will be useful for chip designers, computer architects and system engineers

    Jigsaw: Scalable software-defined caches

    Get PDF
    Shared last-level caches, widely used in chip-multi-processors (CMPs), face two fundamental limitations. First, the latency and energy of shared caches degrade as the system scales up. Second, when multiple workloads share the CMP, they suffer from interference in shared cache accesses. Unfortunately, prior research addressing one issue either ignores or worsens the other: NUCA techniques reduce access latency but are prone to hotspots and interference, and cache partitioning techniques only provide isolation but do not reduce access latency.United States. Defense Advanced Research Projects Agency (DARPA PERFECT contract HR0011-13-2-0005)Quanta Computer (Firm

    A dynamically tunable memory hierarchy

    Full text link

    Composable Virtual Memory for an Embedded SoC

    Full text link
    Systems on a Chip concurrently execute multiple applications that may start and stop at run-time, creating many use-cases. Composability reduces the verifcation effort, by making the functional and temporal behaviours of an application independent of other applications. Existing approaches link applications to static address ranges that cannot be reused between applications that are not simultaneously active, wasting resources. In this paper we propose a composable virtual memory scheme that enables dynamic binding and relocation of applications. Our virtual memory is also predictable, for applications with real-time constraints. We integrated the virtual memory on, CompSOC, an existing composable SoC prototyped in FPGA. The implementation indicates that virtual memory is in general expensive, because it incurs a performance loss around 39% due to address translation latency. On top of this, composability adds to virtual memory an insigni cant extra performance penalty, below 1%

    Jigsaw: Scalable Software-Defined Caches (Extended Version)

    Get PDF
    Shared last-level caches, widely used in chip-multiprocessors (CMPs), face two fundamental limitations. First, the latency and energy of shared caches degrade as the system scales up. Second, when multiple workloads share the CMP, they suffer from interference in shared cache accesses. Unfortunately, prior research addressing one issue either ignores or worsens the other: NUCA techniques reduce access latency but are prone to hotspots and interference, and cache partitioning techniques only provide isolation but do not reduce access latency. We present Jigsaw, a technique that jointly addresses the scalability and interference problems of shared caches. Hardware lets software define shares, collections of cache bank partitions that act as virtual caches, and map data to shares. Shares give software full control over both data placement and capacity allocation. Jigsaw implements efficient hardware support for share management, monitoring, and adaptation. We propose novel resource-management algorithms and use them to develop a system-level runtime that leverages Jigsaw to both maximize cache utilization and place data close to where it is used. We evaluate Jigsaw using extensive simulations of 16- and 64-core tiled CMPs. Jigsaw improves performance by up to 2.2x (18% avg) over a conventional shared cache, and significantly outperforms state-of-the-art NUCA and partitioning techniques.This work was supported in part by DARPA PERFECT contract HR0011-13-2-0005 and Quanta Computer
    corecore