19 research outputs found

    Security of Electrical, Optical and Wireless On-Chip Interconnects: A Survey

    Full text link
    The advancement of manufacturing technologies has enabled the integration of more intellectual property (IP) cores on the same system-on-chip (SoC). Scalable and high throughput on-chip communication architecture has become a vital component in today's SoCs. Diverse technologies such as electrical, wireless, optical, and hybrid are available for on-chip communication with different architectures supporting them. Security of the on-chip communication is crucial because exploiting any vulnerability would be a goldmine for an attacker. In this survey, we provide a comprehensive review of threat models, attacks, and countermeasures over diverse on-chip communication technologies as well as sophisticated architectures.Comment: 41 pages, 24 figures, 4 table

    Secure Network-on-Chip Against Black Hole and Tampering Attacks

    Get PDF
    The Network-on-Chip (NoC) has become the communication heart of Multiprocessors-System-on-Chip (MPSoC). Therefore, it has been subject to a plethora of security threats to degrade the system performance or steal sensitive information. Due to the globalization of the modern semiconductor industry, many different parties take part in the hardware design of the system. As a result, the NoC could be infected with a malicious circuit, known as a Hardware Trojan (HT), to leave a back door for security breach purposes. HTs are smartly designed to be too small to be uncovered by offline circuit-level testing, so the system requires an online monitoring to detect and prevent the HT in runtime. This dissertation focuses on HTs inside the router of a NoC designed by a third party. It explores two HT-based threat models for the MPSoC, where the NoC experiences packet-loss and packet-tampering once the HT in the infected router is activated and is in the attacking state. Extensive experiments for each proposed architecture were conducted using a cycle-accurate simulator to demonstrate its effectiveness on the performance of the NoC-based system. The first threat model is the Black Hole Router (BHR) attack, where it silently discards the packets that are passing through without further announcement. The effect of the BHR is presented and analyzed to show the potency of the attack on a NoC-based system. A countermeasure protocol is proposed to detect the BHR at runtime and counteract the deliberate packet-dropping attack with a 26.9% area overhead, an average 21.31% performance overhead and a 22% energy consumption overhead. The protocol is extended to provide an efficient and power-gated scheme to enhance the NoC throughput and reduce the energy consumption by using end-to-end (e2e) approach. The power-gated e2e technique locates the BHR and avoids it with a 1% performance overhead and a 2% energy consumption overhead. The second threat model is a packet-integrity attack, where the HT tampers with the packet to apply a denial-of-service attack, steal sensitive information, gain unauthorized access, or misroute the packet to an unintended node. An authentic and secure NoC platform is proposed to detect and countermeasure the packet-tampering attack to maintain data-integrity and authenticity while keeping its secrecy with a 24.21% area overhead. The proposed NoC architecture is not only able to detect the attack, but also locates the infected router and isolates it from the network

    Architecting a One-to-many Traffic-Aware and Secure Millimeter-Wave Wireless Network-in-Package Interconnect for Multichip Systems

    Get PDF
    With the aggressive scaling of device geometries, the yield of complex Multi Core Single Chip(MCSC) systems with many cores will decrease due to the higher probability of manufacturing defects especially, in dies with a large area. Disintegration of large System-on-Chips(SoCs) into smaller chips called chiplets has shown to improve the yield and cost of complex systems. Therefore, platform-based computing modules such as embedded systems and micro-servers have already adopted Multi Core Multi Chip (MCMC) architectures overMCSC architectures. Due to the scaling of memory intensive parallel applications in such systems, data is more likely to be shared among various cores residing in different chips resulting in a significant increase in chip-to-chip traffic, especially one-to-many traffic. This one-to-many traffic is originated mainly to maintain cache-coherence between many cores residing in multiple chips. Besides, one-to-many traffics are also exploited by many parallel programming models, system-level synchronization mechanisms, and control signals. How-ever, state-of-the-art Network-on-Chip (NoC)-based wired interconnection architectures do not provide enough support as they handle such one-to-many traffic as multiple unicast trafficusing a multi-hop MCMC communication fabric. As a result, even a small portion of such one-to-many traffic can significantly reduce system performance as traditional NoC-basedinterconnect cannot mask the high latency and energy consumption caused by chip-to-chipwired I/Os. Moreover, with the increase in memory intensive applications and scaling of MCMC systems, traditional NoC-based wired interconnects fail to provide a scalable inter-connection solution required to support the increased cache-coherence and synchronization generated one-to-many traffic in future MCMC-based High-Performance Computing (HPC) nodes. Therefore, these computation and memory intensive MCMC systems need an energy-efficient, low latency, and scalable one-to-many (broadcast/multicast) traffic-aware interconnection infrastructure to ensure high-performance. Research in recent years has shown that Wireless Network-in-Package (WiNiP) architectures with CMOS compatible Millimeter-Wave (mm-wave) transceivers can provide a scalable, low latency, and energy-efficient interconnect solution for on and off-chip communication. In this dissertation, a one-to-many traffic-aware WiNiP interconnection architecture with a starvation-free hybrid Medium Access Control (MAC), an asymmetric topology, and a novel flow control has been proposed. The different components of the proposed architecture are individually one-to-many traffic-aware and as a system, they collaborate with each other to provide required support for one-to-many traffic communication in a MCMC environment. It has been shown that such interconnection architecture can reduce energy consumption and average packet latency by 46.96% and 47.08% respectively for MCMC systems. Despite providing performance enhancements, wireless channel, being an unguided medium, is vulnerable to various security attacks such as jamming induced Denial-of-Service (DoS), eavesdropping, and spoofing. Further, to minimize the time-to-market and design costs, modern SoCs often use Third Party IPs (3PIPs) from untrusted organizations. An adversary either at the foundry or at the 3PIP design house can introduce a malicious circuitry, to jeopardize an SoC. Such malicious circuitry is known as a Hardware Trojan (HT). An HTplanted in the WiNiP from a vulnerable design or manufacturing process can compromise a Wireless Interface (WI) to enable illegitimate transmission through the infected WI resulting in a potential DoS attack for other WIs in the MCMC system. Moreover, HTs can be used for various other malicious purposes, including battery exhaustion, functionality subversion, and information leakage. This information when leaked to a malicious external attackercan reveals important information regarding the application suites running on the system, thereby compromising the user profile. To address persistent jamming-based DoS attack in WiNiP, in this dissertation, a secure WiNiP interconnection architecture for MCMC systems has been proposed that re-uses the one-to-many traffic-aware MAC and existing Design for Testability (DFT) hardware along with Machine Learning (ML) approach. Furthermore, a novel Simulated Annealing (SA)-based routing obfuscation mechanism was also proposed toprotect against an HT-assisted novel traffic analysis attack. Simulation results show that,the ML classifiers can achieve an accuracy of 99.87% for DoS attack detection while SA-basedrouting obfuscation could reduce application detection accuracy to only 15% for HT-assistedtraffic analysis attack and hence, secure the WiNiP fabric from age-old and emerging attacks

    A Comprehensive Study of the Hardware Trojan and Side-Channel Attacks in Three-Dimensional (3D) Integrated Circuits (ICs)

    Get PDF
    Three-dimensional (3D) integration is emerging as promising techniques for high-performance and low-power integrated circuit (IC, a.k.a. chip) design. As 3D chips require more manufacturing phases than conventional planar ICs, more fabrication foundries are involved in the supply chain of 3D ICs. Due to the globalized semiconductor business model, the extended IC supply chain could incur more security challenges on maintaining the integrity, confidentiality, and reliability of integrated circuits and systems. In this work, we analyze the potential security threats induced by the integration techniques for 3D ICs and propose effective attack detection and mitigation methods. More specifically, we first propose a comprehensive characterization for 3D hardware Trojans in the 3D stacking structure. Practical experiment based quantitative analyses have been performed to assess the impact of 3D Trojans on computing systems. Our analysis shows that advanced attackers could exploit the limitation of the most recent 3D IC testing standard IEEE Standard 1838 to bypass the tier-level testing and successfully implement a powerful TSV-Trojan in 3D chips. We propose an enhancement for IEEE Standard 1838 to facilitate the Trojan detection on two neighboring tiers simultaneously. Next, we develop two 3D Trojan detection methods. The proposed frequency-based Trojan-activity identification (FTAI) method can differentiate the frequency changes induced by Trojans from those caused by process variation noise, outperforming the existing time-domain Trojan detection approaches by 38% in Trojan detection rate. Our invariance checking based Trojan detection method leverages the invariance among the 3D communication infrastructure, 3D network-on-chips (NoCs), to tackle the cross-tier 3D hardware Trojans, achieving a Trojan detection rate of over 94%. Furthermore, this work investigates another type of common security threat, side-channel attacks. We first propose to group the supply voltages of different 3D tiers temporally to drive the crypto unit implemented in 3D ICs such that the noise in power distribution network (PDN) can be induced to obfuscate the original power traces and thus mitigates correlation power analysis (CPA) attacks. Furthermore, we study the side-channel attack on the logic locking mechanism in monolithic 3D ICs and propose a logic-cone conjunction (LCC) method and a configuration guideline for the transistor-level logic locking to strengthen its resilience against CPA attacks

    Towards trustworthy computing on untrustworthy hardware

    Get PDF
    Historically, hardware was thought to be inherently secure and trusted due to its obscurity and the isolated nature of its design and manufacturing. In the last two decades, however, hardware trust and security have emerged as pressing issues. Modern day hardware is surrounded by threats manifested mainly in undesired modifications by untrusted parties in its supply chain, unauthorized and pirated selling, injected faults, and system and microarchitectural level attacks. These threats, if realized, are expected to push hardware to abnormal and unexpected behaviour causing real-life damage and significantly undermining our trust in the electronic and computing systems we use in our daily lives and in safety critical applications. A large number of detective and preventive countermeasures have been proposed in literature. It is a fact, however, that our knowledge of potential consequences to real-life threats to hardware trust is lacking given the limited number of real-life reports and the plethora of ways in which hardware trust could be undermined. With this in mind, run-time monitoring of hardware combined with active mitigation of attacks, referred to as trustworthy computing on untrustworthy hardware, is proposed as the last line of defence. This last line of defence allows us to face the issue of live hardware mistrust rather than turning a blind eye to it or being helpless once it occurs. This thesis proposes three different frameworks towards trustworthy computing on untrustworthy hardware. The presented frameworks are adaptable to different applications, independent of the design of the monitored elements, based on autonomous security elements, and are computationally lightweight. The first framework is concerned with explicit violations and breaches of trust at run-time, with an untrustworthy on-chip communication interconnect presented as a potential offender. The framework is based on the guiding principles of component guarding, data tagging, and event verification. The second framework targets hardware elements with inherently variable and unpredictable operational latency and proposes a machine-learning based characterization of these latencies to infer undesired latency extensions or denial of service attacks. The framework is implemented on a DDR3 DRAM after showing its vulnerability to obscured latency extension attacks. The third framework studies the possibility of the deployment of untrustworthy hardware elements in the analog front end, and the consequent integrity issues that might arise at the analog-digital boundary of system on chips. The framework uses machine learning methods and the unique temporal and arithmetic features of signals at this boundary to monitor their integrity and assess their trust level

    Prepare for VoIP Spam

    Get PDF

    Cybersecurity and the Digital Health: An Investigation on the State of the Art and the Position of the Actors

    Get PDF
    Cybercrime is increasingly exposing the health domain to growing risk. The push towards a strong connection of citizens to health services, through digitalization, has undisputed advantages. Digital health allows remote care, the use of medical devices with a high mechatronic and IT content with strong automation, and a large interconnection of hospital networks with an increasingly effective exchange of data. However, all this requires a great cybersecurity commitment—a commitment that must start with scholars in research and then reach the stakeholders. New devices and technological solutions are increasingly breaking into healthcare, and are able to change the processes of interaction in the health domain. This requires cybersecurity to become a vital part of patient safety through changes in human behaviour, technology, and processes, as part of a complete solution. All professionals involved in cybersecurity in the health domain were invited to contribute with their experiences. This book contains contributions from various experts and different fields. Aspects of cybersecurity in healthcare relating to technological advance and emerging risks were addressed. The new boundaries of this field and the impact of COVID-19 on some sectors, such as mhealth, have also been addressed. We dedicate the book to all those with different roles involved in cybersecurity in the health domain

    An Empirical Analysis of Cyber Deception Systems

    Get PDF

    Australia and Cyberwarfare

    Get PDF
    This book explores Australia’s prospective cyber-warfare requirements and challenges. It describes the current state of planning and thinking within the Australian Defence Force with respect to Network Centric Warfare, and discusses the vulnerabilities that accompany the use by Defence of the National Information Infrastructure (NII), as well as Defence’s responsibility for the protection of the NII. It notes the multitude of agencies concerned in various ways with information security, and argues that mechanisms are required to enhance coordination between them. It also argues that Australia has been laggard with respect to the development of offensive cyber-warfare plans and capabilities. Finally, it proposes the establishment of an Australian Cyber-warfare Centre responsible for the planning and conduct of both the defensive and offensive dimensions of cyber-warfare, for developing doctrine and operational concepts, and for identifying new capability requirements. It argues that the matter is urgent in order to ensure that Australia will have the necessary capabilities for conducting technically and strategically sophisticated cyber-warfare activities by the 2020s. The Foreword has been contributed by Professor Kim C. Beazley, former Minister for Defence (1984–90), who describes it as ‘a timely book which transcends old debates on priorities for the defence of Australia or forward commitments, [and] debates about globalism and regionalism’, and as ‘an invaluable compendium’ to the current process of refining the strategic guidance for Australia’s future defence policies and capabilities
    corecore