826 research outputs found

    Simulation of Relay modes in IEEE 802.16j Mobile Multi-hop Relay (MMR) WIMAX Networks

    Get PDF
    Two different relay modes are defined in IEEE 802.16j WIMAX standard: transparent mode and non-transparent mode. The non transparent mode is used to extend the coverage area of base stations, where low cost relay station of equal capacity as that of base station is placed at suitable position. Time taken to accept mobile stations and Bandwidth allocation are main problems in non transparent mode. In this we have studied the IEEE 802.16j standard multi hop relay WIMAX networks. We have used relay stations to extend the coverage of base stations. We have also analyzed the throughput between mobile stations with in the coverage area and outside coverage area of base stations. We have simulated the IEEE 802.16j transparent and non transparent mode multi hop WIMAX relay networks using NCTUns Too

    Bandwidth Allocation Based on Traffic Load and Interference in IEEE 802.16 Mesh Networks

    Get PDF

    Implementation of Distributed Time Exchange Based Cooperative Forwarding

    Full text link
    In this paper, we design and implement time exchange (TE) based cooperative forwarding where nodes use transmission time slots as incentives for relaying. We focus on distributed joint time slot exchange and relay selection in the sum goodput maximization of the overall network. We formulate the design objective as a mixed integer nonlinear programming (MINLP) problem and provide a polynomial time distributed solution of the MINLP. We implement the designed algorithm in the software defined radio enabled USRP nodes of the ORBIT indoor wireless testbed. The ORBIT grid is used as a global control plane for exchange of control information between the USRP nodes. Experimental results suggest that TE can significantly increase the sum goodput of the network. We also demonstrate the performance of a goodput optimization algorithm that is proportionally fair.Comment: Accepted in 2012 Military Communications Conferenc

    Relay Technologies in IEEE 802.16j Mobile Multi-hop Relay (MMR) Networks

    Get PDF
    IEEE 802.16 standard is created to compete with cable access networks. In the beginning end users are immobile and have a line of sight with base station, now it moved to mobile non line of sight (NLOS) with the new standard IEEE 802.16e and IEEE 802.16j. The new IEEE 802.16j standard which is an amendment to IEEE 802.16e is mobile multi hop relay (MMR) specification for wireless networks. This paper discusses relay modes, relay transmission schemes and relay pairing schemes of IEEE 802.16j. Relay technologies such as transparent relay modes, non transparent relay mode, relay pairing schemes such as centralized relay pairing schemes, distributed relay pairing scheme, characterises of relay based networks such as throughput enhancement, capacity increase, cost reduction , relay techniques such as time domain frequency domain relay techniques and relay placement are also discussed in this paper. The paper also discusses about integration of IEEE 802.16j with IEEE 802.11. Keywords: IEEE 802.16j, Relay pairing schemes, relay techniques, Relay modes, WIMAX, NCTUns, et

    Traffic Sensitive and Traffic Load Aware Path Selection Algorithm For MMR WIMAX Networks

    Get PDF
    The recent developments in the broadband wireless access (BWA) communication systems have introduced several major changes to the existing systems. Legacy IEEE 802.16j is one such amendment to the existing IEEE 802.16 WiMAX family. The key modification introduced by 802.16j system is the concept of relay station (RS), which may be used to enhance the system coverage or to make system throughput optimal. The end terminals, subscriber stations (SS) are unchanged in the standard. The overall change pertinent to the system has raised many unresolved issues related to RS and multi-hop relay base station (MR-BS). The selection of path from a SS to MR-BS via a RS is also one of the issues, need to be addressed. The path selection of a SS in both uplink and downlink directions is left open in the standard. It is very significant to satisfy the traffics of stringent quality of service (QoS) requirements and to appropriately manage the resources of a cell under different circumstances. This paper proposes a path selection algorithm to achieve the aforementioned qualities in the network. The path selection metrics include traffic load of the transparent relay station and traffic sensitivity factor of the SS. An extensive simulation work discusses the performance evaluation of the proposed work using QualNet simulator

    Cooperative control of relay based cellular networks

    Get PDF
    PhDThe increasing popularity of wireless communications and the higher data requirements of new types of service lead to higher demands on wireless networks. Relay based cellular networks have been seen as an effective way to meet users’ increased data rate requirements while still retaining the benefits of a cellular structure. However, maximizing the probability of providing service and spectrum efficiency are still major challenges for network operators and engineers because of the heterogeneous traffic demands, hard-to-predict user movements and complex traffic models. In a mobile network, load balancing is recognised as an efficient way to increase the utilization of limited frequency spectrum at reasonable costs. Cooperative control based on geographic load balancing is employed to provide flexibility for relay based cellular networks and to respond to changes in the environment. According to the potential capability of existing antenna systems, adaptive radio frequency domain control in the physical layer is explored to provide coverage at the right place at the right time. This thesis proposes several effective and efficient approaches to improve spectrum efficiency using network wide optimization to coordinate the coverage offered by different network components according to the antenna models and relay station capability. The approaches include tilting of antenna sectors, changing the power of omni-directional antennas, and changing the assignment of relay stations to different base stations. Experiments show that the proposed approaches offer significant improvements and robustness in heterogeneous traffic scenarios and when the propagation environment changes. The issue of predicting the consequence of cooperative decisions regarding antenna configurations when applied in a realistic environment is described, and a coverage prediction model is proposed. The consequences of applying changes to the antenna configuration on handovers are analysed in detail. The performance evaluations are based on a system level simulator in the context of Mobile WiMAX technology, but the concepts apply more generally

    A Survey on Scheduling in IEEE 802.16 Mesh Mode

    Get PDF
    Cataloged from PDF version of article.IEEE 802.16 standard (also known as WiMAX) defines the wireless broadband network technology which aims to solve the so called last mile problem via providing high bandwidth Internet even to the rural areas for which the cable deployment is very costly. The standard mainly focuses on the MAC and PHY layer issues, supporting two transmission modes: PMP (Point-to-Multipoint) and mesh modes. Mesh mode is an optional mode developed as an extension to PMP mode and it has the advantage of having an improving performance as more subscribers are added to the system using multi-hop routes. In 802.16 MAC protocol, mesh mode slot allocation and reservation mechanisms are left open which makes this topic a hot research area. Hence, the focus of this survey will mostly be on the mesh mode, and the proposed scheduling algorithms and performance evaluation methods
    corecore