14 research outputs found

    An overlapped grid method for multigrid, finite volume/difference flow solvers: MaGGiE

    Get PDF
    The objective is to develop a domain decomposition method via overlapping/embedding the component grids, which is to be used by upwind, multi-grid, finite volume solution algorithms. A computer code, given the name MaGGiE (Multi-Geometry Grid Embedder) is developed to meet this objective. MaGGiE takes independently generated component grids as input, and automatically constructs the composite mesh and interpolation data, which can be used by the finite volume solution methods with or without multigrid convergence acceleration. Six demonstrative examples showing various aspects of the overlap technique are presented and discussed. These cases are used for developing the procedure for overlapping grids of different topologies, and to evaluate the grid connection and interpolation data for finite volume calculations on a composite mesh. Time fluxes are transferred between mesh interfaces using a trilinear interpolation procedure. Conservation losses are minimal at the interfaces using this method. The multi-grid solution algorithm, using the coaser grid connections, improves the convergence time history as compared to the solution on composite mesh without multi-gridding

    Coupled Fluid-Structure Simulation for Turbomachinery Blade Rows

    Full text link
    A numerical method for the computation of aeroelasticity is presented. Although the emphasis here is on turbomachinery, the method is applicable to a wide variety of problems. A ow solver is coupled to a structural solver by use of a uid-structure interface method. The integration of the three-dimensional unsteady Navier-Stokes equations is performed in the time domain, simultaneously to the integration of a modal three-dimensional struc-tural model. The ow solution is accelerated by using a multigrid method and a parallel multiblock approach. Fluid-structure coupling is achieved by subiteration. The code is formulated to allow application to general, three-dimensional congurations with multi-ple independent structures. The capability of the code to handle rotating blade rows is demonstrated by an application to a transonic fan. I

    Multiphysics simulations: challenges and opportunities.

    Full text link

    Non-intrusive Coupling: Recent Advances and Scalable Nonlinear Domain Decomposition

    Get PDF
    This paper provides a detailed review of the global/local non-intrusive coupling algorithm. Such method allows to alter a global finite element model, without actually modifying its corresponding numerical operator. We also look into improvements of the initial algorithm (Quasi- Newton and dynamic relaxation), and provide comparisons based on several relevant test cases. Innovative examples and advanced applications of the non-intrusive coupling algorithm are provided, granting a handy framework for both researchers and engineers willing to make use of such process. Finally, a novel nonlinear domain decomposition method is derived from the global/local non-intrusive cou- pling strategy, without the need to use a parallel code or software. Such method being intended to large scale analysis, we show its scalability. Jointly, an efficient high level Message Passing Interface coupling framework is also proposed, granting an universal and flexible way for easy software coupling. A sample code is also given

    A parallel algorithm for deformable contact problems

    Get PDF
    In the field of nonlinear computational solid mechanics, contact problems deal with the deformation of separate bodies which interact when they come in touch. Usually, these problems are formulated as constrained minimization problems which may be solved using optimization techniques such as penalty method, Lagrange multipliers, Augmented Lagrangian method, etc. This classical approach is based on node connectivities between the contacting bodies. These connectivities are created through the construction of contact elements introduced for the discretization of the contact interface, which incorporate the contact constraints in the global weak form. These methods are well known and widely used in the resolution of contact problems in engineering and science. As parallel computing platforms are nowadays widely available, solving large engineering problems on high performance computers is a real possibility for any engineer or researcher. Due to the memory and compute power that contact problems require and consume, they are good candidates for parallel computation. Industrial and scientific realistic contact problems involve different physical domains and a large number of degrees of freedom, so algorithms designed to run efficiently in high performance computers are needed. Nevertheless, the parallelization of the numerical solution methods that arises from the classical optimization techniques and discretization approaches presents some drawbacks which must be considered. Mainly, for general contact cases where sliding occurs, the introduction of contact elements requires the update of the mesh graph in a fixed number of time steps. From the point of view of the domain decomposition method for parallel resolution of numerical problems this is a major drawback due to its computational expensiveness, since dynamic repartitioning must be done to redistribute the updated mesh graph to the different processors. On the other hand, some of the optimization techniques modify dynamically the number of degrees of freedom in the problem, by introducing Lagrange multipliers as unknowns. In this work we introduce a Dirichlet-Neumann type parallel algorithm for the numerical solution of nonlinear frictional contact problems, putting a strong focus on its computational implementation. Among its main characteristics it can be highlighted that there is no need to update the mesh graph during the simulation, as no contact elements are used. Also, no additional degrees of freedom are introduced into the system, since no Lagrange multipliers are required. In this algorithm the bodies in contact are treated separately, in a segregated way. The coupling between the contacting bodies is performed through boundary conditions transfer at the contact zone. From a computational point of view, this feature allows to use a multi-code approach. Furthermore, the algorithm can be interpreted as a black-box method as it solves each body separately even with different computational codes. In addition, the contact algorithm proposed in this thesis can also be formulated as a general fixed-point solver for the solution of interface problems. This generalization gives us the theoretical basis to extrapolate and implement numerical techniques that were already developed and widely tested in the field of fluid-structure interaction (FSI) problems, especially those related to convergence ensurance and acceleration. We describe the parallel implementation of the proposed algorithm and analyze its parallel behaviour and performance in both validation and realistic test cases executed in HPC machines using several processors.En el ámbito de la mecánica de contacto computacional, los problemas de contacto tratan con la deformación que sufren cuerpos separados cuando interactúan entre ellos. Comunmente, estos problemas son formulados como problemas de minimización con restricciones, que pueden ser resueltos utilizando técnicas de optimización como la penalización, los multiplicadores de Lagrange, el Lagrangiano Aumentado, etc. Este enfoque clásico está basado en la conectividad de nodos entre los cuerpos, que se realiza a través de la construcción de los elementos de contacto que surgen de la discretización de la interfaz. Estos elementos incorporan las restricciones de contacto en forma débil. Debido al consumo de memoria y a los requerimientos de potencia de cálculo que los problemas de contacto requieren, resultan ser muy buenos candidatos para su paralelización computacional. Sin embargo, tanto la paralelización de los métodos numéricos que surgen de las técnicas clásicas de optimización como los distintos enfoques para su discretización, presentan algunas desventajas que deben ser consideradas. Por un lado, el principal problema aparece ya que en los casos más generales de la mecánica de contacto ocurre un deslizamiento entre cuerpos. Por este motivo, la introducción de los elementos de contacto vuelve necesaria una actualización del grafo de la malla cada cierto número de pasos de tiempo. Desde el punto de vista del método de descomposición de dominios utilizado en la resolución paralela de problemas numéricos, esto es una gran desventaja debidoa su coste computacional. En estos casos, un reparticionamiento dinámico debe ser realizado para redistribuir el grafo actualizado de la malla entre los diferentes procesadores. Por otro lado, algunas técnicas de optimización modifican dinámicamente el número de grados de libertad del problema al introducir multiplicadores de Lagrange como incógnitas. En este trabajo presentamos un algoritmo paralelo del tipo Dirichlet-Neumann para la resolución numérica de problemas de contacto no lineales con fricción, poniendo un especial énfasis en su implementación computacional. Entre sus principales características se puede destacar que no hay necesidad de actualizar el grafo de la malla durante la simulación, ya que en este algoritmo no se utilizan elementos de contacto. Adicionalmente, ningún grado de libertad extra es introducido al sistema, ya que los multiplicadores de Lagrange no son requeridos. En este algoritmo los cuerpos en contacto son tratados de forma separada, de una manera segregada. El acople entre estos cuerpos es realizado a través del intercambio de condiciones de contorno en la interfaz de contacto. Desde un punto de vista computacional, esta característica permite el uso de un enfoque multi-código. Además, este algoritmo puede ser interpretado como un método del tipo black-box ya que permite resolver cada cuerpo por separado, aún utilizando distintos códigos computacionales. Adicionalmente, el algoritmo de contacto propuesto en esta tesis puede ser formulado como un esquema de resolución de punto fijo, empleado de forma general en la solución de problemas de interfaz. Esta generalización permite extrapolar técnicas numéricas ya utilizadas en los problemas de interacción fluido-estructura e implementarlas en la mecánica de contacto, en especial aquellas relacionadas con el aseguramiento y aceleración de la convergencia. En este trabajo describimos la implementación paralela del algoritmo propuesto y analizamos su comportamiento y performance paralela tanto en casos de validación como reales, ejecutados en computadores de alta performance utilizando varios procesadores.Postprint (published version

    Large-scale tree-based unfitted finite elements for metal additive manufacturing

    Get PDF
    This thesis addresses large-scale numerical simulations of partial differential equations posed on evolving geometries. Our target application is the simulation of metal additive manufacturing (or 3D printing) with powder-bed fusion methods, such as Selective Laser Melting (SLM), Direct Metal Laser Sintering (DMLS) or Electron-Beam Melting (EBM). The simulation of metal additive manufacturing processes is a remarkable computational challenge, because processes are characterised by multiple scales in space and time and multiple complex physics that occur in intricate three-dimensional growing-in-time geometries. Only the synergy of advanced numerical algorithms and high-performance scientific computing tools can fully resolve, in the short run, the simulation needs in the area. The main goal of this Thesis is to design a a novel highly-scalable numerical framework with multi-resolution capability in arbitrarily complex evolving geometries. To this end, the framework is built by combining three computational tools: (1) parallel mesh generation and adaptation with forest-of-trees meshes, (2) robust unfitted finite element methods and (3) parallel finite element modelling of the geometry evolution in time. Our numerical research is driven by several limitations and open questions in the state-of-the-art of the three aforementioned areas, which are vital to achieve our main objective. All our developments are deployed with high-end distributed-memory implementations in the large-scale open-source software project FEMPAR. In considering our target application, (4) temporal and spatial model reduction strategies for thermal finite element models are investigated. They are coupled to our new large-scale computational framework to simplify optimisation of the manufacturing process. The contributions of this Thesis span the four ingredients above. Current understanding of (1) is substantially improved with rigorous proofs of the computational benefits of the 2:1 k-balance (ease of parallel implementation and high-scalability) and the minimum requirements a parallel tree-based mesh must fulfil to yield correct parallel finite element solvers atop them. Concerning (2), a robust, optimal and scalable formulation of the aggregated unfitted finite element method is proposed on parallel tree-based meshes for elliptic problems with unfitted external contour or unfitted interfaces. To the author’s best knowledge, this marks the first time techniques (1) and (2) are brought together. After enhancing (1)+(2) with a novel parallel approach for (3), the resulting framework is able to mitigate a major performance bottleneck in large-scale simulations of metal additive manufacturing processes by powder-bed fusion: scalable adaptive (re)meshing in arbitrarily complex geometries that grow in time. Along the development of this Thesis, our application problem (4) is investigated in two joint collaborations with the Monash Centre for Additive Manufacturing and Monash University in Melbourne, Australia. The first contribution is an experimentally-supported thorough numerical assessment of time-lumping methods, the second one is a novel experimentally-validated formulation of a new physics-based thermal contact model, accounting for thermal inertia and suitable for model localisation, the so-called virtual domain approximation. By efficiently exploiting high-performance computing resources, our new computational framework enables large-scale finite element analysis of metal additive manufacturing processes, with increased fidelity of predictions and dramatical reductions of computing times. It can also be combined with the proposed model reductions for fast thermal optimisation of the manufacturing process. These tools open the path to accelerate the understanding of the process-to-performance link and digital product design and certification in metal additive manufacturing, two milestones that are vital to exploit the technology for mass-production.Aquesta tesi tracta la simulació a gran escala d'equacions en derivades parcials sobre geometries variables. L'aplicació principal és la simulació de procesos de fabricació additiva (o impressió 3D) amb metalls i per mètodes de fusió de llit de pols, com ara Selective Laser Melting (SLM), Direct Metal Laser Sintering (DMLS) o Electron-Beam Melting (EBM). La simulació d'aquests processos és un repte computacional excepcional, perquè els processos estan caracteritzats per múltiples escales espaitemporals i múltiples físiques que tenen lloc sobre geometries tridimensionals complicades que creixen en el temps. La sinèrgia entre algorismes numèrics avançats i eines de computació científica d'alt rendiment és la única via per resoldre completament i a curt termini les necessitats en simulació d'aquesta àrea. El principal objectiu d'aquesta tesi és dissenyar un nou marc numèric escalable de simulació amb capacitat de multiresolució en geometries complexes i variables. El nou marc es construeix unint tres eines computacionals: (1) mallat paral·lel i adaptatiu amb malles de boscs d'arbre, (2) mètodes d'elements finits immersos robustos i (3) modelització en paral·lel amb elements finits de geometries que creixen en el temps. Algunes limitacions i problemes oberts en l'estat de l'art, que són claus per aconseguir el nostre objectiu, guien la nostra recerca. Tots els desenvolupaments s'implementen en arquitectures de memòria distribuïda amb el programari d'accés obert FEMPAR. Quant al problema d'aplicació, (4) s'investiguen models reduïts en espai i temps per models tèrmics del procés. Aquests models reduïts s'acoplen al nostre marc computacional per simplificar l'optimització del procés. Les contribucions d'aquesta tesi abasten els quatre punts de dalt. L'estat de l'art de (1) es millora substancialment amb proves riguroses dels beneficis computacionals del 2:1 balancejat (fàcil paral·lelització i alta escalabilitat), així com dels requisits mínims que aquest tipus de mallat han de complir per garantir que els espais d'elements finits que s'hi defineixin estiguin ben posats. Quant a (2), s'ha formulat un mètode robust, òptim i escalable per agregació per problemes el·líptics amb contorn o interface immerses. Després d'augmentar (1)+(2) amb un nova estratègia paral·lela per (3), el marc de simulació resultant mitiga de manera efectiva el principal coll d'ampolla en la simulació de processos de fabricació additiva en llits de pols de metall: adaptivitat i remallat escalable en geometries complexes que creixen en el temps. Durant el desenvolupament de la tesi, es col·labora amb el Monash Centre for Additive Manufacturing i la Universitat de Monash de Melbourne, Austràlia, per investigar el problema d'aplicació. En primer lloc, es fa una anàlisi experimental i numèrica exhaustiva dels mètodes d'aggregació temporal. En segon lloc, es proposa i valida experimental una nova formulació de contacte tèrmic que té en compte la inèrcia tèrmica i és adequat per a localitzar el model, l'anomenada aproximació per dominis virtuals. Mitjançant l'ús eficient de recursos computacionals d'alt rendiment, el nostre nou marc computacional fa possible l'anàlisi d'elements finits a gran escala dels processos de fabricació additiva amb metalls, amb augment de la fidelitat de les prediccions i reduccions significatives de temps de computació. Així mateix, es pot combinar amb els models reduïts que es proposen per l'optimització tèrmica del procés de fabricació. Aquestes eines contribueixen a accelerar la comprensió del lligam procés-rendiment i la digitalització del disseny i certificació de productes en fabricació additiva per metalls, dues fites crucials per explotar la tecnologia en producció en massa.Postprint (published version

    HERMESH : a geometrical domain composition method in computational mechanics

    Get PDF
    With this thesis we present the HERMESH method which has been classified by us as a a composition domain method. This term comes from the idea that HERMESH obtains a global solution of the problem from two independent meshes as a result of the mesh coupling. The global mesh maintains the same number of degrees of freedom as the sum of the independent meshes, which are coupled in the interfaces via new elements referred to by us as extension elements. For this reason we enunciate that the domain composition method is geometrical. The result of the global mesh is a non-conforming mesh in the interfaces between independent meshes due to these new connectivities formed with existing nodes and represented by the new extension elements. The first requirements were that the method be implicit, be valid for any partial differential equation and not imply any additional effort or loss in efficiency in the parallel performance of the code in which the method has been implemented. In our opinion, these properties constitute the main contribution in mesh coupling for the computational mechanics framework. From these requirements, we have been able to develop an automatic and topology-independent tool to compose independent meshes. The method can couple overlapping meshes with minimal intervention on the user's part. The overlapping can be partial or complete in the sense of overset meshes. The meshes can be disjoint with or without a gap between them. And we have demonstrated the flexibility of the method in the relative mesh size. In this work we present a detailed description of HERMESH which has been implemented in a high-performance computing computational mechanics code within the framework of the finite element methods. This code is called Alya. The numerical properties will be proved with different benchmark-type problems and the manufactured solution technique. Finally, the results in complex problems solved with HERMESH will be presented, clearly showing the versatility of the method.En este trabajo presentamos el metodo HERMESH al que hemos catalogado como un método de composición de dominios puesto que a partir de mallas independientes se obtiene una solución global del problema como la unión de los subproblemas que forman las mallas independientes. Como resultado, la malla global mantiene el mismo número de grados de libertad que la suma de los grados de libertad de las mallas independientes, las cuales se acoplan en las interfases internas a través de nuevos elementos a los que nos referimos como elementos de extensión. Por este motivo decimos que el método de composición de dominio es geométrico. El resultado de la malla global es una malla que no es conforme en las interfases entre las distintas mallas debido a las nuevas conectividades generadas sobre los nodos existentes. Los requerimientos de partida fueron que el método se implemente de forma implícita, sea válido para cualquier PDE y no implique ningún esfuerzo adicional ni perdida de eficiencia para el funcionamiento paralelo del código de altas prestaciones en el que ha sido implementado. Creemos que estas propiedades son las principales aportaciones de esta tesis dentro del marco de acoplamiento de mallas en mecánica computacional. A partir de estas premisas, hemos conseguido una herramienta automática e independiente de la topología para componer mallas. Es capaz de acoplar sin necesidad de intervención del usuario, mallas con solapamiento parcial o total así como mallas disjuntas con o sin "gap" entre ellas. También hemos visto que ofrece cierta flexibilidad en relación al tamaños relativos entre las mallas siendo un método válido como técnica de remallado local. Presentamos una descripción detallada de la implementación de esta técnica, llevada a cabo en un código de altas prestaciones de mecánica computacional en el contexto de elementos finitos, Alya. Se demostrarán todas las propiedades numéricas que ofrece el métodos a través de distintos problemas tipo benchmark y el método de la solución manufacturada. Finalmente se mostrarán los resultados en problemas complejos resueltos con el método HERMESH, que a su vez es una prueba de la gran flexibilidad que nos brinda

    Uçak-uzay Yapilarinin Statik Aeroelastik Kriter Ile Çok Disiplinli Tasarim Optimizasyonu

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2008Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2008Bu tez çalışmasında aeroelastik optimizasyon, AGARD 445.6 elastik kanat konfigürasyonundan yola çıkılarak basit bir kanat için en yüksek taşıma/sürükleme oranı ve en düşük kütle amaç fonksiyonlarına ulaşmak için yapılmıştır. Tasarım kısıtı olarak bir statik aerolastik kriter olan en yüksek uç yer değiştirmesi verilmiştir. Kanadın çeyrek veterdeki ok açısı ve sivrilme oranı tasarım parametreleri olarak atanmıştır. Optimizasyon algoritması olarak bir genetik algoritma olan NSGA—II algoritması kullanılmıştır. Optimizasyon çalışmasında çok amaçlı tasarım ortamı (mode)FRONTIER 4.0 optimizasyon yazılımı kullanılmıştır. Bu çalışmayı yapmak için çeşitli betikler yazılmıştır: ABAQUS 6.7-1 sonlu eleman çözücüsü betiği yapısal modeli hazırlamak için, FLUENT 6.3.26 ve GAMBIT 2.2.30 betikleri akışkan modelini hazırlamak için ve çözüm ağı tabanlı paralel kod eşleme arayüzü MpCCI 3.0.6 ise gevşek bağlaşımlı aeroelastik analizleri yürütmek için kullanılmıştır. Aeroelastik analizler bir sıralı “staggered” algoritma kullanılarak çözülmüştür. Aerodinamik yüzey yükleri düğüm bazlı kuvvetlere çevrilerek yapısal çözücüye aktarılmakta, bu yükler altında yapılan statik analiz sonucunda oluşan yer değiştirmeler ise akışkan koduna çözüm ağı hareketi olarak gönderilmektedir. Yapısal, akışkan ve aeroelastik analizler sonunda alınan sonuçlar AGARD 445.6 kanadı üstüne yapılmış önceki sayısal ve rüzgar tüneli verileri ile karşılaştırılmıştır. Karşılaştırmadan sonra geçerliliği onaylanan kanat kullanılarak aeroelastik optimizasyon çalışması yapılmıştır. Aeroelastik optimizasyon sonunda en uygun çözümü seçebilmek için pareto kümesi oluşturulmuştur. Tasarım değişkenlerinin amaç fonksiyonları üzerindeki etkileri ve aralarında ilişki modeFRONTIER 4.0 yazılımının sonuç değerlendirme araçları kullanılarak yapılmıştır.In this thesis aeroelastic optimization is performed on a basic experimental wing model based on AGARD 445.6 elastic wing configuration to obtain the objectives maximum lift/drag ratio and minimum weight of the wing. A static aeroelastic criteria is given as a design constraint to satisfy the maximum tip deflection. Sweep angle at the quarter chord and the taper ratio of the wing are used as design parameters. Moreover, a genetic algorithm NSGA-II is used to control the optimization process. The optimization study is done by using the Multi-Objective Design Environment (mode)FRONTIER 4.0 optimization software with the written: ABAQUS 6.7-1 finite element solver script to prepare the CSD model, FLUENT 6.3.26 and GAMBIT 2.2.30 scripts to prepare the CFD model and Mesh based Parallel Code Coupling Interface-MpCCI 3.0.6 script to perform loosely coupled aeroelastic analysis. Aeroelastic analysis is done by using a staggered algorithm. Aerodynamic surface pressures converted to nodal forces and transferred to the CSD code, then under these forces static analysis is performed and nodal displacements are transfered to CFD code as mesh movements. The results from the structural, fluid and aeroelastic fields are used to compare the results with the numerical and the wind tunnel data of the AGARD 445.6 wing. Once the wing is validated the aeroelastic optimization study is performed. The pareto set for the optimum designs are obtained at the end of the aeroelastic optimization study to choose the best design configuration. The effect of the design variables on objective functions and their relationship are examined.Yüksek LisansM.Sc
    corecore