1,249 research outputs found

    Switchable slow cellular conductances determine robustness and tunability of network states.

    Get PDF
    Neuronal information processing is regulated by fast and localized fluctuations of brain states. Brain states reliably switch between distinct spatiotemporal signatures at a network scale even though they are composed of heterogeneous and variable rhythms at a cellular scale. We investigated the mechanisms of this network control in a conductance-based population model that reliably switches between active and oscillatory mean-fields. Robust control of the mean-field properties relies critically on a switchable negative intrinsic conductance at the cellular level. This conductance endows circuits with a shared cellular positive feedback that can switch population rhythms on and off at a cellular resolution. The switch is largely independent from other intrinsic neuronal properties, network size and synaptic connectivity. It is therefore compatible with the temporal variability and spatial heterogeneity induced by slower regulatory functions such as neuromodulation, synaptic plasticity and homeostasis. Strikingly, the required cellular mechanism is available in all cell types that possess T-type calcium channels but unavailable in computational models that neglect the slow kinetics of their activation

    Control Across Scales by Positive and Negative Feedback

    Get PDF
    Feedback is a key element of regulation, as it shapes the sensitivity of a process to its environment. Positive feedback upregulates, and negative feedback downregulates. Many regulatory processes involve a mixture of both, whether in nature or in engineering. This article revisits the mixed-feedback paradigm, with the aim of investigating control across scales. We propose that mixed feedback regulates excitability and that excitability plays a central role in multiscale neuronal signaling. We analyze this role in a multiscale network architecture inspired by neurophysiology. The nodal behavior defines a mesoscale that connects actuation at the microscale to regulation at the macroscale. We show that mixed-feedback nodal control provides regulatory principles at the network scale, with a nodal resolution. In this sense, the mixed-feedback paradigm is a control principle across scales. </jats:p

    Cell types, network homeostasis, and pathological compensation from a biologically plausible ion channel expression model.

    Get PDF
    How do neurons develop, control, and maintain their electrical signaling properties in spite of ongoing protein turnover and perturbations to activity? From generic assumptions about the molecular biology underlying channel expression, we derive a simple model and show how it encodes an "activity set point" in single neurons. The model generates diverse self-regulating cell types and relates correlations in conductance expression observed in vivo to underlying channel expression rates. Synaptic as well as intrinsic conductances can be regulated to make a self-assembling central pattern generator network; thus, network-level homeostasis can emerge from cell-autonomous regulation rules. Finally, we demonstrate that the outcome of homeostatic regulation depends on the complement of ion channels expressed in cells: in some cases, loss of specific ion channels can be compensated; in others, the homeostatic mechanism itself causes pathological loss of function.Charles A. King TrustThis is the final version of the article. It first appeared from Cell Press (Elsevier) via http://dx.doi.org/10.1016/j.neuron.2014.04.002

    Dynamic Control of Network Level Information Processing through Cholinergic Modulation

    Full text link
    Acetylcholine (ACh) release is a prominent neurochemical marker of arousal state within the brain. Changes in ACh are associated with changes in neural activity and information processing, though its exact role and the mechanisms through which it acts are unknown. Here I show that the dynamic changes in ACh levels that are associated with arousal state control informational processing functions of networks through its effects on the degree of Spike-Frequency Adaptation (SFA), an activity dependent decrease in excitability, synchronizability, and neuronal resonance displayed by single cells. Using numerical modeling I develop mechanistic explanations for how control of these properties shift network activity from a stable high frequency spiking pattern to a traveling wave of activity. This transition mimics the change in brain dynamics seen between high ACh states, such as waking and Rapid Eye Movement (REM) sleep, and low ACh states such as Non-REM (NREM) sleep. A corresponding, and related, transition in network level memory recall is also occurs as ACh modulates neuronal SFA. When ACh is at its highest levels (waking) all memories are stably recalled, as ACh is decreased (REM) in the model weakly encoded memories destabilize while strong memories remain stable. In levels of ACh that match Slow Wave Sleep (SWS), no encoded memories are stably recalled. This results from a competition between SFA and excitatory input strength and provides a mechanism for neural networks to control the representation of underlying synaptic information. Finally I show that during the low ACh conditions, oscillatory conditions allow for external inputs to be properly stored in and recalled from synaptic weights. Taken together this work demonstrates that dynamic neuromodulation is critical for the regulation of information processing tasks in neural networks. These results suggest that ACh is capable of switching networks between two distinct information processing modes. Rate coding of information is facilitated during high ACh conditions and phase coding of information is facilitated during low ACh conditions. Finally I propose that ACh levels control whether a network is in one of three functional states: (High ACh; Active waking) optimized for encoding of new information or the stable representation of relevant memories, (Mid ACh; resting state or REM) optimized for encoding connections between currently stored memories or searching the catalog of stored memories, and (Low ACh; NREM) optimized for renormalization of synaptic strength and memory consolidation. This work provides a mechanistic insight into the role of dynamic changes in ACh levels for the encoding, consolidation, and maintenance of memories within the brain.PHDNeuroscienceUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147503/1/roachjp_1.pd

    A Fast-Slow Analysis of the Dynamics of REM Sleep

    Full text link
    Waking and sleep states are regulated by the coordinated activity of a number of neuronal population in the brainstem and hypothalamus whose synaptic interactions compose a sleep-wake regulatory network. Physiologically based mathematical models of the sleep-wake regulatory network contain mechanisms operating on multiple time scales including relatively fast synaptic-based interations between neuronal populations, and much slower homeostatic and circadian processes that modulate sleep-wake temporal patterning. In this study, we exploit the naturally arising slow time scale of the homeostatic sleep drive in a reduced sleep-wake regulatory network model to utilize fast-slow analysis to investigate the dynamics of rapid eye movement (REM) sleep regulation. The network model consists of a reduced number of wake-, non-REM (NREM) sleep-, and REM sleep-promoting neuronal populations with the synaptic interactions reflecting the mutually inhibitory flip-flop conceptual model for sleep-wake regulation and the reciprocal interaction model for REM sleep regulation. Network dynamics regularly alternate between wake and sleep states as goverend by the slow homeostatic sleep drive. By varying a parameter associated with the activation of the REM-promoting population, we cause REM dynamics during sleep episodes to vary from supression to single activations to regular REM-NREM cycling, corresponding to changes in REM patterning induced by circadian modulation and observed in different mammalian species. We also utilize fast-slow analysis to explain complex effects on sleep-wake patterning of simulated experiments in which agonists and antagonists of different neurotransmitters are microinjected into specific neuronal populations participating in the sleep-wake regulatory network
    • …
    corecore