776 research outputs found

    A Generalized Graph Reduction Framework for Interactive Segmentation of Large Images

    Get PDF
    The speed of graph-based segmentation approaches, such as random walker (RW) and graph cut (GC), depends strongly on image size. For high-resolution images, the time required to compute a segmentation based on user input renders interaction tedious. We propose a novel method, using an approximate contour sketched by the user, to reduce the graph before passing it on to a segmentation algorithm such as RW or GC. This enables a significantly faster feedback loop. The user first draws a rough contour of the object to segment. Then, the pixels of the image are partitioned into “layers” (corresponding to different scales) based on their distance from the contour. The thickness of these layers increases with distance to the contour according to a Fibonacci sequence. An initial segmentation result is rapidly obtained after automatically generating foreground and background labels according to a specifically selected layer; all vertices beyond this layer are eliminated, restricting the segmentation to regions near the drawn contour. Further foreground/background labels can then be added by the user to refine the segmentation. All iterations of the graph-based segmentation benefit from a reduced input graph, while maintaining full resolution near the object boundary. A user study with 16 participants was carried out for RW segmentation of a multi-modal dataset of 22 medical images, using either a standard mouse or a stylus pen to draw the contour. Results reveal that our approach significantly reduces the overall segmentation time compared with the status quo approach (p < 0.01). The study also shows that our approach works well with both input devices. Compared to super-pixel graph reduction, our approach provides full resolution accuracy at similar speed on a high-resolution benchmark image with both RW and GC segmentation methods. However, graph reduction based on super-pixels does not allow interactive correction of clustering errors. Finally, our approach can be combined with super-pixel clustering methods for further graph reduction, resulting in even faster segmentation

    Video segmentation by level set.

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Semi-supervised segmentation of ultrasound images based on patch representation and continuous min cut.

    Get PDF
    Ultrasound segmentation is a challenging problem due to the inherent speckle and some artifacts like shadows, attenuation and signal dropout. Existing methods need to include strong priors like shape priors or analytical intensity models to succeed in the segmentation. However, such priors tend to limit these methods to a specific target or imaging settings, and they are not always applicable to pathological cases. This work introduces a semi-supervised segmentation framework for ultrasound imaging that alleviates the limitation of fully automatic segmentation, that is, it is applicable to any kind of target and imaging settings. Our methodology uses a graph of image patches to represent the ultrasound image and user-assisted initialization with labels, which acts as soft priors. The segmentation problem is formulated as a continuous minimum cut problem and solved with an efficient optimization algorithm. We validate our segmentation framework on clinical ultrasound imaging (prostate, fetus, and tumors of the liver and eye). We obtain high similarity agreement with the ground truth provided by medical expert delineations in all applications (94% DICE values in average) and the proposed algorithm performs favorably with the literature

    User-centered design and evaluation of interactive segmentation methods for medical images

    Get PDF
    Segmentation of medical images is a challenging task that aims to identify a particular structure present on the image. Among the existing methods involving the user at different levels, from a fully-manual to a fully-automated task, interactive segmentation methods provide assistance to the user during the task to reduce the variability in the results and allow occasional corrections of segmentation failures. Therefore, they offer a compromise between the segmentation efficiency and the accuracy of the results. It is the user who judges whether the results are satisfactory and how to correct them during the segmentation, making the process subject to human factors. Despite the strong influence of the user on the outcomes of a segmentation task, the impact of such factors has received little attention, with the literature focusing the assessment of segmentation processes on computational performance. Yet, involving the user performance in the analysis is more representative of a realistic scenario. Our goal is to explore the user behaviour in order to improve the efficiency of interactive image segmentation processes. This is achieved through three contributions. First, we developed a method which is based on a new user interaction mechanism to provide hints as to where to concentrate the computations. This significantly improves the computation efficiency without sacrificing the quality of the segmentation. The benefits of using such hints are twofold: (i) because our contribution is based on user interaction, it generalizes to a wide range of segmentation methods, and (ii) it gives comprehensive indications about where to focus the segmentation search. The latter advantage is used to achieve the second contribution. We developed an automated method based on a multi-scale strategy to: (i) reduce the user’s workload and, (ii) improve the computational time up to tenfold, allowing real-time segmentation feedback. Third, we have investigated the effects of such improvements in computations on the user’s performance. We report an experiment that manipulates the delay induced by the computation time while performing an interactive segmentation task. Results reveal that the influence of this delay can be significantly reduced with an appropriate interaction mechanism design. In conclusion, this project provides an effective image segmentation solution that has been developed in compliance with user performance requirements. We validated our approach through multiple user studies that provided a step forward into understanding the user behaviour during interactive image segmentation
    corecore