1,498 research outputs found

    An evolutionary approach to routing in mobile AD HOC networks using dominating sets.

    Get PDF
    This thesis presents a new approach to routing in ad-hoc wireless networks using virtual backbones that may be approximated by the graph theoretic concept of dominating sets. · Ad hoc wireless networks provide a flexible and quick means of establishing wireless peer-to-peer communications. Routing remains the main challenging problem in an ad hoc network due to its multihop nature and dynamic network topology. Several protocols based on virtual backbones in ad hoc wireless networks have been proposed that may be used to simplify the routing process. However, little is known about the network routing performance of these protocols and no attempt has previously been made to directly compare them. This thesis is the first research effort to implement, analyze and compare the routing performance of dominating-set-based routing protocols. In this study, we examine four existing routing approaches using a virtual backbone, or spine , imposed on the ad­hoc network. We then propose an evolutionary approach to constructing a stable minimum connected dominating set in an ad hoc wireless network: this employs the use of a genetic algorithm. Since the mobile· nodes that constitute an ad hoc wireless network are constantly in motion, the network configuration is subject to constant change in a manner that resembles the biological process of mutation. This evolution of networks over time lends itself naturally to a model based on genetic algorithms. As part of an in-depth study of the application of genetic algorithms in the field of wireless networks, a scatternet formation protocol for Bluetooth networks was designed, developed and evaluated. This helped to build the knowledge base required to implement new routing protocols using the network simulator ns-2. Simulation studies were then conducted using ns-2 to compare the performance of previously proposed dominating­set-based routing approaches. In this thesis, we analyze the performance of our evolutionary routing approach and compare it with the previous approaches. We present our simulation results and show that our evolutionary routing approach outperforms the other routing algorithms with respect to end-to-end packet delay, throughput, packet delivery ratio and routing overhead· across several different scenarios. Thus, we demonstrate the advantages of utilizing a genetic algorithm to construct a backbone that is · used to effectively route packets in an ad-hoc wireless network

    Scalable energy-efficient routing in mobile Ad hoc network

    Get PDF
    The quick deployment without any existing infrastructure makes mobile ad hoc networks (MANET) a striking choice for dynamic situations such as military and rescue operations, disaster recovery, and so on and so forth. However, routing remains one of the major issues in MANET due to the highly dynamic and distributed environment. Energy consumption is also a significant issue in ad hoc networks since the nodes are battery powered. This report discusses some major dominating set based approaches to perform energy efficient routing in mobile ad hoc networks. It also presents the performance results for each of these mentioned approaches in terms of throughput, average end to end delay and the life time in terms of the first node failure. Based on the simulation results, I identified the key issues in these protocols regarding network life time. In this report, I propose and discuss a new approach “Dynamic Dominating Set Generation Algorithm” (DDSG) to optimize the network life time. This algorithm dynamically selects dominating nodes during the process of routing and thus creates a smaller dominating set. DDSG algorithm thereby eliminates the energy consumption from the non-used dominating nodes. In order to further increase the network life time, the algorithm takes into consideration the threshold settings which helps to distribute the process of routing within the network. This helps to eliminate a single dominating node from getting drained out by continuous transmission and reception of packets. In this report, the detailed algorithmic design and performance results through simulation is discussed

    Message and time efficient multi-broadcast schemes

    Full text link
    We consider message and time efficient broadcasting and multi-broadcasting in wireless ad-hoc networks, where a subset of nodes, each with a unique rumor, wish to broadcast their rumors to all destinations while minimizing the total number of transmissions and total time until all rumors arrive to their destination. Under centralized settings, we introduce a novel approximation algorithm that provides almost optimal results with respect to the number of transmissions and total time, separately. Later on, we show how to efficiently implement this algorithm under distributed settings, where the nodes have only local information about their surroundings. In addition, we show multiple approximation techniques based on the network collision detection capabilities and explain how to calibrate the algorithms' parameters to produce optimal results for time and messages.Comment: In Proceedings FOMC 2013, arXiv:1310.459

    Neighbour coverage: a dynamic probabilistic route discovery for mobile ad hoc networks

    Get PDF
    Blind flooding is extensively use in ad hoc routing protocols for on-demand route discovery, where a mobile node blindly rebroadcasts received route request (RREQ) packets until a route to a particular destination is established. This can potentially lead to high channel contention, causing redundant retransmissions and thus excessive packet collisions in the network. Such a phenomenon induces what is known as broadcast storm problem, which has been shown to greatly increase the network communication overhead and end-to-end delay. In this paper, we show that the deleterious impact of such a problem can be reduced if measures are taken during the dissemination of RREQ packets. We propose a generic probabilistic method for route discovery, that is simple to implement and can significantly reduce the overhead associated with the dissemination of RREQs. Our analysis reveals that equipping AODV with probabilistic route discovery can result in significant reduction of routing control overhead while achieving good throughput

    Distributed Service Discovery for Heterogeneous Wireless Sensor Networks

    Get PDF
    Service discovery in heterogeneous Wireless Sensor Networks is a challenging research objective, due to the inherent limitations of sensor nodes and their extensive and dense deployment. The protocols proposed for ad hoc networks are too heavy for sensor environments. This paper presents a resourceaware solution for the service discovery problem, which exploits the heterogeneous nature of the sensor network and alleviates the high-density problem from the flood-based approaches. The idea is to organize nodes into clusters, based on the available resources and the dynamics of nodes. The clusterhead nodes act as a distributed directory of service registrations. Service discovery messages are exchanged among the nodes in the distributed directory. The simulation results show the performance of the service discovery protocol in heterogeneous dense environments

    Construction of Pipelined Strategic Connected Dominating Set for Mobile Ad Hoc Networks

    Get PDF
    Efficient routing between nodes is the most important challenge in a Mobile Ad Hoc Network (MANET). A Connected Dominating Set (CDS) acts as a virtual backbone for routing in a MANET. Hence, the construction of CDS based on the need and its application plays a vital role in the applications of MANET. The PipeLined Strategic CDS (PLS-CDS) is constructed based on strategy, dynamic diameter and transmission range. The strategy used for selecting the starting node is, any source node in the network, which has its entire destination within a virtual pipelined coverage, instead of the node with maximum connectivity. The other nodes are then selected based on density and velocity. The proposed CDS also utilizes the energy of the nodes in the network in an optimized manner. Simulation results showed that the proposed algorithm is better in terms of size of the CDS and average hop per path length

    An ACO Algorithm for Effective Cluster Head Selection

    Full text link
    This paper presents an effective algorithm for selecting cluster heads in mobile ad hoc networks using ant colony optimization. A cluster in an ad hoc network consists of a cluster head and cluster members which are at one hop away from the cluster head. The cluster head allocates the resources to its cluster members. Clustering in MANET is done to reduce the communication overhead and thereby increase the network performance. A MANET can have many clusters in it. This paper presents an algorithm which is a combination of the four main clustering schemes- the ID based clustering, connectivity based, probability based and the weighted approach. An Ant colony optimization based approach is used to minimize the number of clusters in MANET. This can also be considered as a minimum dominating set problem in graph theory. The algorithm considers various parameters like the number of nodes, the transmission range etc. Experimental results show that the proposed algorithm is an effective methodology for finding out the minimum number of cluster heads.Comment: 7 pages, 5 figures, International Journal of Advances in Information Technology (JAIT); ISSN: 1798-2340; Academy Publishers, Finlan
    corecore