32 research outputs found

    Analog System-on-a-Chip with Application to Biosensors

    Get PDF
    This dissertation facilitates the design and fabrication of analog systems-on-a-chip (SoCs). In this work an analog SoC is developed with application to organic fluid analysis. The device contains a built-in self-test method for performing on-chip analysis of analog macros. The analog system-on-a-chip developed in this dissertation can be used to evaluate the properties of fluids for medical diagnoses. The research herein described covers the development of: analog SoC models, an improved set of chemical sensor arrays, a self-contained system-on-a-chip for the determination of fluid properties, and a method of performing on-chip testing of analog SoC sub-blocks

    Degradation in FPGAs: Monitoring, Modeling and Mitigation

    Get PDF
    This dissertation targets the transistor aging degradation as well as the associated thermal challenges in FPGAs (since there is an exponential relation between aging and chip temperature). The main objectives are to perform experimentation, analysis and device-level model abstraction for modeling the degradation in FPGAs, then to monitor the FPGA to keep track of aging rates and ultimately to propose an aging-aware FPGA design flow to mitigate the aging

    VLSI Design

    Get PDF
    This book provides some recent advances in design nanometer VLSI chips. The selected topics try to present some open problems and challenges with important topics ranging from design tools, new post-silicon devices, GPU-based parallel computing, emerging 3D integration, and antenna design. The book consists of two parts, with chapters such as: VLSI design for multi-sensor smart systems on a chip, Three-dimensional integrated circuits design for thousand-core processors, Parallel symbolic analysis of large analog circuits on GPU platforms, Algorithms for CAD tools VLSI design, A multilevel memetic algorithm for large SAT-encoded problems, etc

    STT-MRAM characterization and its test implications

    Get PDF
    Spin torque transfer (STT)-magnetoresistive random-access memory (MRAM) has come a long way in research to meet the speed and power consumption requirements for future memory applications. The state-of-the-art STT-MRAM bit-cells employ magnetic tunnel junction (MTJ) with perpendicular magnetic anisotropy (PMA). The process repeatabil- ity and yield stability for wafer fabrication are some of the critical issues encountered in STT-MRAM mass production. Some of the yield improvement techniques to combat the e ect of process variations have been previously explored. However, little research has been done on defect oriented testing of STT-MRAM arrays. In this thesis, the author investi- gates the parameter deviation and non-idealities encountered during the development of a novel MTJ stack con guration. The characterization result provides motivation for the development of the design for testability (DFT) scheme that can help test and characterize STT-MRAM bit-cells and the CMOS peripheral circuitry e ciently. The primary factors for wafer yield degradation are the device parameter variation and its non-uniformity across the wafer due to the fabrication process non-idealities. There- fore, e ective in-process testing strategies for exploring and verifying the impact of the parameter variation on the wafer yield will be needed to achieve fabrication process opti- mization. While yield depends on the CMOS process variability, quality of the deposited MTJ lm, and other process non-idealities, test platform can enable parametric optimiza- tion and veri cation using the CMOS-based DFT circuits. In this work, we develop a DFT algorithm and implement a DFT circuit for parametric testing and prequali cation of the critical circuits in the CMOS wafer. The DFT circuit successfully replicates the electrical characteristics of MTJ devices and captures their spatial variation across the wafer with an error of less than 4%. We estimate the yield of the read sensing path by implement- ing the DFT circuit, which can replicate the resistance-area product variation up to 50% from its nominal value. The yield data from the read sensing path at di erent wafer loca- tions are analyzed, and a usable wafer radius has been estimated. Our DFT scheme can provide quantitative feedback based on in-die measurement, enabling fabrication process optimization through iterative estimation and veri cation of the calibrated parameters. Another concern that prevents mass production of STT-MRAM arrays is the defect formation in MTJ devices due to aging. Identifying manufacturing defects in the magnetic tunnel junction (MTJ) device is crucial for the yield and reliability of spin-torque-transfer (STT) magnetic random-access memory (MRAM) arrays. Several of the MTJ defects result in parametric deviations of the device that deteriorate over time. We extend our work on the DFT scheme by monitoring the electrical parameter deviations occurring due to the defect formation over time. A programmable DFT scheme was implemented for a sub-arrayin 65 nm CMOS technology to evaluate the feasibility of the test scheme. The scheme utilizes the read sense path to compare the bit-cell electrical parameters against known DFT cells characteristics. Built-in-self-test (BIST) methodology is utilized to trigger the onset of the fault once the device parameter crosses a threshold value. We demonstrate the operation and evaluate the accuracy of detection with the proposed scheme. The DFT scheme can be exploited for monitoring aging defects, modeling their behavior and optimization of the fabrication process. DFT scheme could potentially nd numerous applications for parametric characteriza- tion and fault monitoring of STT-MRAM bit-cell arrays during mass production. Some of the applications include a) Fabrication process feedback to improve wafer turnaround time, b) STT-MRAM bit-cell health monitoring, c) Decoupled characterization of the CMOS pe- ripheral circuitry such as read-sensing path and sense ampli er characterization within the STT-MRAM array. Additionally, the DFT scheme has potential applications for detec- tion of fault formation that could be utilized for deploying redundancy schemes, providing a graceful degradation in MTJ-based bit-cell array due to aging of the device, and also providing feedback to improve the fabrication process and yield learning

    Characterisation and mitigation of long-term degradation effects in programmable logic

    No full text
    Reliability has always been an issue in silicon device engineering, but until now it has been managed by the carefully tuned fabrication process. In the future the underlying physical limitations of silicon-based electronics, plus the practical challenges of manufacturing with such complexity at such a small scale, will lead to a crunch point where transistor-level reliability must be forfeited to continue achieving better productivity. Field-programmable gate arrays (FPGAs) are built on state-of-the-art silicon processes, but it has been recognised for some time that their distinctive characteristics put them in a favourable position over application-specific integrated circuits in the face of the reliability challenge. The literature shows how a regular structure, interchangeable resources and an ability to reconfigure can all be exploited to detect, locate, and overcome degradation and keep an FPGA application running. To fully exploit these characteristics, a better understanding is needed of the behavioural changes that are seen in the resources that make up an FPGA under ageing. Modelling is an attractive approach to this and in this thesis the causes and effects are explored of three important degradation mechanisms. All are shown to have an adverse affect on FPGA operation, but their characteristics show novel opportunities for ageing mitigation. Any modelling exercise is built on assumptions and so an empirical method is developed for investigating ageing on hardware with an accelerated-life test. Here, experiments show that timing degradation due to negative-bias temperature instability is the dominant process in the technology considered. Building on simulated and experimental results, this work also demonstrates a variety of methods for increasing the lifetime of FPGA lookup tables. The pre-emptive measure of wear-levelling is investigated in particular detail, and it is shown by experiment how di fferent reconfiguration algorithms can result in a significant reduction to the rate of degradation

    A novel deep submicron bulk planar sizing strategy for low energy subthreshold standard cell libraries

    Get PDF
    Engineering andPhysical Science ResearchCouncil (EPSRC) and Arm Ltd for providing funding in the form of grants and studentshipsThis work investigates bulk planar deep submicron semiconductor physics in an attempt to improve standard cell libraries aimed at operation in the subthreshold regime and in Ultra Wide Dynamic Voltage Scaling schemes. The current state of research in the field is examined, with particular emphasis on how subthreshold physical effects degrade robustness, variability and performance. How prevalent these physical effects are in a commercial 65nm library is then investigated by extensive modeling of a BSIM4.5 compact model. Three distinct sizing strategies emerge, cells of each strategy are laid out and post-layout parasitically extracted models simulated to determine the advantages/disadvantages of each. Full custom ring oscillators are designed and manufactured. Measured results reveal a close correlation with the simulated results, with frequency improvements of up to 2.75X/2.43X obs erved for RVT/LVT devices respectively. The experiment provides the first silicon evidence of the improvement capability of the Inverse Narrow Width Effect over a wide supply voltage range, as well as a mechanism of additional temperature stability in the subthreshold regime. A novel sizing strategy is proposed and pursued to determine whether it is able to produce a superior complex circuit design using a commercial digital synthesis flow. Two 128 bit AES cores are synthesized from the novel sizing strategy and compared against a third AES core synthesized from a state-of-the-art subthreshold standard cell library used by ARM. Results show improvements in energy-per-cycle of up to 27.3% and frequency improvements of up to 10.25X. The novel subthreshold sizing strategy proves superior over a temperature range of 0 °C to 85 °C with a nominal (20 °C) improvement in energy-per-cycle of 24% and frequency improvement of 8.65X. A comparison to prior art is then performed. Valid cases are presented where the proposed sizing strategy would be a candidate to produce superior subthreshold circuits

    Design of complex integrated systems based on networks-on-chip: Trading off performance, power and reliability

    Get PDF
    The steady advancement of microelectronics is associated with an escalating number of challenges for design engineers due to both the tiny dimensions and the enormous complexity of integrated systems. Against this background, this work deals with Network-On-Chip (NOC) as the emerging design paradigm to cope with diverse issues of nanotechnology. The detailed investigations within the chapters focus on the communication-centric aspects of multi-core-systems, whereas performance, power consumption as well as reliability are considered likewise as the essential design criteria

    Design and debugging of multi-step analog to digital converters

    Get PDF
    With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. The trend of increasing integration level for integrated circuits has forced the A/D converter interface to reside on the same silicon in complex mixed-signal ICs containing mostly digital blocks for DSP and control. However, specifications of the converters in various applications emphasize high dynamic range and low spurious spectral performance. It is nontrivial to achieve this level of linearity in a monolithic environment where post-fabrication component trimming or calibration is cumbersome to implement for certain applications or/and for cost and manufacturability reasons. Additionally, as CMOS integrated circuits are accomplishing unprecedented integration levels, potential problems associated with device scaling – the short-channel effects – are also looming large as technology strides into the deep-submicron regime. The A/D conversion process involves sampling the applied analog input signal and quantizing it to its digital representation by comparing it to reference voltages before further signal processing in subsequent digital systems. Depending on how these functions are combined, different A/D converter architectures can be implemented with different requirements on each function. Practical realizations show the trend that to a first order, converter power is directly proportional to sampling rate. However, power dissipation required becomes nonlinear as the speed capabilities of a process technology are pushed to the limit. Pipeline and two-step/multi-step converters tend to be the most efficient at achieving a given resolution and sampling rate specification. This thesis is in a sense unique work as it covers the whole spectrum of design, test, debugging and calibration of multi-step A/D converters; it incorporates development of circuit techniques and algorithms to enhance the resolution and attainable sample rate of an A/D converter and to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover and compensate for the errors continuously. The power proficiency for high resolution of multi-step converter by combining parallelism and calibration and exploiting low-voltage circuit techniques is demonstrated with a 1.8 V, 12-bit, 80 MS/s, 100 mW analog to-digital converter fabricated in five-metal layers 0.18-µm CMOS process. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. Microscopic particles present in the manufacturing environment and slight variations in the parameters of manufacturing steps can all lead to the geometrical and electrical properties of an IC to deviate from those generated at the end of the design process. Those defects can cause various types of malfunctioning, depending on the IC topology and the nature of the defect. To relive the burden placed on IC design and manufacturing originated with ever-increasing costs associated with testing and debugging of complex mixed-signal electronic systems, several circuit techniques and algorithms are developed and incorporated in proposed ATPG, DfT and BIST methodologies. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. With the use of dedicated sensors, which exploit knowledge of the circuit structure and the specific defect mechanisms, the method described in this thesis facilitates early and fast identification of excessive process parameter variation effects. The expectation-maximization algorithm makes the estimation problem more tractable and also yields good estimates of the parameters for small sample sizes. To allow the test guidance with the information obtained through monitoring process variations implemented adjusted support vector machine classifier simultaneously minimize the empirical classification error and maximize the geometric margin. On a positive note, the use of digital enhancing calibration techniques reduces the need for expensive technologies with special fabrication steps. Indeed, the extra cost of digital processing is normally affordable as the use of submicron mixed signal technologies allows for efficient usage of silicon area even for relatively complex algorithms. Employed adaptive filtering algorithm for error estimation offers the small number of operations per iteration and does not require correlation function calculation nor matrix inversions. The presented foreground calibration algorithm does not need any dedicated test signal and does not require a part of the conversion time. It works continuously and with every signal applied to the A/D converter. The feasibility of the method for on-line and off-line debugging and calibration has been verified by experimental measurements from the silicon prototype fabricated in standard single poly, six metal 0.09-µm CMOS process

    Reliability in Power Electronics and Power Systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    耐ソフトエラーラッチにおける欠陥の分析、検出及び評価に関する研究

    Get PDF
    The development of modern integrated circuits (ICs) has greatly changed the life of humankind. Nowadays, IC s are also indispensable to mission-critical applications, such as medical devices, autonomous cars, aircraft navigating systems, and satellites. The reliability of these mission-critical applications is a major concern. A soft-error occurring in an IC is a severe threat to its reliability, especially for mission-critical applications. The continuous trend of shrinking technology feature sizes makes modern ICs more and more vulnerable to soft errors. Soft-errors are caused by radiation particles striking an IC and generating current pulses to disturb its functionality. A soft-error can cause data corruption and may eventually lead to system failure s If a soft-error occurs in an operational medical device during surgery, it may cause a malfunction of this device and interrupt the surgery process. A soft-error may change the control data of an autonomous car which may lead to an accident. A soft-error may corrupt the aircraft navigating systems. No one would take the chance to let it happen even though malfunction s caused by soft errors can be solved by resetting these devices. Because reset takes time and severe results may happen during the resetting. If a soft-error causes a malfunction in the control system of a satellite, it may not be able to maintain its height and eventually burn up as it falls into the Earth’s atmosphere. Hence, it is important to protect ICs from soft errors. Many soft-error tolerance methods have been proposed to protect ICs against soft-errors. In an IC, memory elements and storage elements (e.g., latches and flip flops) are the most vulnerable to soft-errors, and data stored in them are crucial to the operation of a circuit. Error correction codes (ECCs) can be u sed to protect memories. Register-level soft-error tolerance methods can be used to detect soft-errors in latches by using parity checking and correct them by resetting. Hardened designs protect latches against soft-errors by using redundant feedback loops to store the same input data and using a voter to select the correct output. The advantage of using hardened designs is that they can prevent soft-errors from reaching outputs while ECCs and register-level soft-error tolerance methods must detect soft-errors and then correct them by restoring the data. For protecting storage elements in mission-critical applications, hardened latch design is the best option because it has high reliability and can save the resetting time. Many state-of-the-art hardened latch designs have been proposed to tolerate soft errors and they are believed to have good soft-error tolerability. Defects (physical flaws due to imperfect production (production defects) and physical changes caused by aging effects after a long operation time (aging-related defects) can also cause a malfunction of a circuit and cause a system failure eventually. Different from the temporal state change of a circuit caused by soft errors, defects are permanent damages to a circuit and can disturb the behavior of a circuit from its desired manner. Defects in storage elements should be detected to make sure a system/device operating correctly and stably. Scan test is a commonly used defect detection method, which connects reconfigured storage elements to form a shift register with external access and the internal states of these storage elements can be easily controlled and checked. However, the impact of defects on existing state of the art hardened latch design has not been considered. This impact requires consideration because added redundancy in hardened latch designs can not only mask soft-errors but also mask the effects of defects and it can lead to two serious problems: Problem-1 (Low Testability): Production defects in hardened latch designs are difficult to detect with conventional scan tests, in which the observability (an important metric to evaluate a circuit’s testability) of defects in hardened latch designs can be greatly reduced. Therefore, existing state-of-the-art hardened latches have low observability and thus low testability. Furthermore, defects that escaped the production test (undetected defects) may become more and more serious and cause a system failure eventually. Problem-2 (Low Soft-Error Tolerability): Undetected defects and aging-related defects can make hardened latch designs vulnerable to soft-errors while defect-free ones do not. The soft-error tolerability of hardened latch designs may be compromise d by undetected defects or aging related defects. This research is the first to consider Problem-1 of low testability of hardened latches and Problem-2 of defects reducing the reliability of hardened latches. Furthermore, this research is the first to pro pose a comprehensive solution to solve these two problems with the following five major contributions: Contribution-1: A first of its kind metric for quantifying the impact of defects on hardened latches, called Post-Test Vulnerability Factor (PTVF). It is used to analyze the residual soft-error tolerability of hardened latches after testing. Problem-2 is solved by this first major contribution. Contribution-2: A novel design called Scan-Test-Aware Hardened Latch (STAHL) that provides the highest defect coverage in comparison with all existing hardened latches. Problem-1 is solved by using STAHL to build a scan c ell to perform a scan test. Contribution-3: A novel scan test procedure is proposed to solve Problem-1 by fully testing the STAHL based scan cell. Contribution-4: A novel High-Performance Scan-Test-Aware Hardened Latch (HP-STAHL) design can also solve Problem-1 and has similar defect coverage as STAHL but has lower power consumption and higher propagation speed. Contribution-5: A novel scan test procedure is proposed to fully test the HP STAHL-based scan cell to solve Problem-1. Comprehensive simulation results demonstrate the accuracy of the PTVF metric and the effectiveness of the STAHL-based scan test and HP-STAHL-based scan test. As the first comprehensive study bridging the gap between hardened latch design s and IC testing, the findings of this research are expected to significantly improve the soft-error-related reliability of IC designs for mission-critical applications. Furthermore, the two proposed hardened latches and the scan test procedures can not only be use d to detect defects after production but also can be applied to detect aging related defects in the field through performing built-in self-test (BIST). In Chapter 1, an example is introduced to indicate Problem-1 and Problem-2. Chapter 2 shows the background information of soft-errors and defects. Chapter 3 shows some typical soft-error mitigation methods and details of a scan test. Chapter 4 describes the detailed information of PTVF Contribution-1). Chapter 5 shows the structure of STAHL (Contribution-2) and Chapter 6 shows the scan test procedure of testing the STAHL-based scan cell (Contribution-3). Chapter 7 shows the structure of HP-STAHL (Contribution-4) and Chapter 8 shows the scan test procedure of testing the HP-STAHL based scan cell (Contribution-5). Chapter 9 shows the experimental results of comparing STAHL and HP-STAHL with state-of-the-art hardened latch designs. Chapter 10 concludes this thesis.九州工業大学博士学位論文 学位記番号:情工博甲第371号 学位授与年月日:令和4年9月26日1. Introduction|2. Background|3. Related Works|4. Post-Test Vulnerability Factor (PTVF)|5. Scan-Test Aware Hardened Latch (STAHL)|6. Scan Test Based on STAHL|7. High Performance Scan-Test-Aware Hardened Latch (HP STAHL)|8. Scan Test Based on HP STAHL|9. Experimental Evaluation|10. Conclusions and Future Works九州工業大学令和4年
    corecore