61 research outputs found

    A three-level BDDC algorithm for mortar discretizations

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1137/07069081X.In this paper, a three-level balancing domain decomposition by constraints (BDDC) algorithm is developed for the solutions of large sparse algebraic linear systems arising from the mortar discretization of elliptic boundary value problems. The mortar discretization is considered on geometrically nonconforming subdomain partitions. In two-level BDDC algorithms, the coarse problem needs to be solved exactly. However, its size will increase with the increase of the number of the subdomains. To overcome this limitation, the three-level algorithm solves the coarse problem inexactly while a good rate of convergence is maintained. This is an extension of previous work: the three-level BDDC algorithms for standard finite element discretization. Estimates of the condition numbers are provided for the three-level BDDC method, and numerical experiments are also discussed

    A Nonoverlapping Domain Decomposition Method for Incompressible Stokes Equations with Continuous Pressures

    Get PDF
    This is the publisher's version, also available electronically from http://epubs.siam.org/doi/abs/10.1137/120861503A nonoverlapping domain decomposition algorithm is proposed to solve the linear system arising from mixed finite element approximation of incompressible Stokes equations. A continuous finite element space for the pressure is used. In the proposed algorithm, Lagrange multipliers are used to enforce continuity of the velocity component across the subdomain boundary. The continuity of the pressure component is enforced in the primal form, i.e., neighboring subdomains share the same pressure degrees of freedom on the subdomain interface and no Lagrange multipliers are needed. After eliminating all velocity variables and the independent subdomain interior parts of the pressures, a symmetric positive semidefinite linear system for the subdomain boundary pressures and the Lagrange multipliers is formed and solved by a preconditioned conjugate gradient method. A lumped preconditioner is studied and the condition number bound of the preconditioned operator is proved to be independent of the number of subdomains for fixed subdomain problem size. Numerical experiments demonstrate the convergence rate of the proposed algorithm
    • …
    corecore