1,146 research outputs found

    Compressing Binary Decision Diagrams

    Full text link
    The paper introduces a new technique for compressing Binary Decision Diagrams in those cases where random access is not required. Using this technique, compression and decompression can be done in linear time in the size of the BDD and compression will in many cases reduce the size of the BDD to 1-2 bits per node. Empirical results for our compression technique are presented, including comparisons with previously introduced techniques, showing that the new technique dominate on all tested instances.Comment: Full (tech-report) version of ECAI 2008 short pape

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Combining Binary Decision Diagrams and Backtracking Search for Scalable Backtrack-Free Interactive Product Configuration

    Get PDF
    The impact of the formation of HO2-H2O adducts following reaction between H2O and HO2 and subsequent reaction of this adduct on HOx, H2O2 and O3 as a function of relative humidity in the marine boundary layer has been investigated using a zero-dimensional box model. The results of simulations with different product yields for the reaction of HO2-H2O with HO2 were compared with base case data derived from current recommendations for tropospheric modelling. It is suggested that inclusion of reactions of the HO2-H2O adduct may provide a significant sink for HO2 which has so far not been considered in models of tropospheric chemistry and depending on reaction products may have a significant impact on H2O2 and O3

    Sigref – A Symbolic Bisimulation Tool Box

    Get PDF
    We present a uniform signature-based approach to compute the most popular bisimulations. Our approach is implemented symbolically using BDDs, which enables the handling of very large transition systems. Signatures for the bisimulations are built up from a few generic building blocks, which naturally correspond to efficient BDD operations. Thus, the definition of an appropriate signature is the key for a rapid development of algorithms for other types of bisimulation. We provide experimental evidence of the viability of this approach by presenting computational results for many bisimulations on real-world instances. The experiments show cases where our framework can handle state spaces efficiently that are far too large to handle for any tool that requires an explicit state space description. This work was partly supported by the German Research Council (DFG) as part of the Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS). See www.avacs.org for more information

    Verified AIG Algorithms in ACL2

    Full text link
    And-Inverter Graphs (AIGs) are a popular way to represent Boolean functions (like circuits). AIG simplification algorithms can dramatically reduce an AIG, and play an important role in modern hardware verification tools like equivalence checkers. In practice, these tricky algorithms are implemented with optimized C or C++ routines with no guarantee of correctness. Meanwhile, many interactive theorem provers can now employ SAT or SMT solvers to automatically solve finite goals, but no theorem prover makes use of these advanced, AIG-based approaches. We have developed two ways to represent AIGs within the ACL2 theorem prover. One representation, Hons-AIGs, is especially convenient to use and reason about. The other, Aignet, is the opposite; it is styled after modern AIG packages and allows for efficient algorithms. We have implemented functions for converting between these representations, random vector simulation, conversion to CNF, etc., and developed reasoning strategies for verifying these algorithms. Aside from these contributions towards verifying AIG algorithms, this work has an immediate, practical benefit for ACL2 users who are using GL to bit-blast finite ACL2 theorems: they can now optionally trust an off-the-shelf SAT solver to carry out the proof, instead of using the built-in BDD package. Looking to the future, it is a first step toward implementing verified AIG simplification algorithms that might further improve GL performance.Comment: In Proceedings ACL2 2013, arXiv:1304.712

    CLab 1.0 User Manual

    Get PDF
    corecore