134 research outputs found

    A brain-machine interface for assistive robotic control

    Get PDF
    Brain-machine interfaces (BMIs) are the only currently viable means of communication for many individuals suffering from locked-in syndrome (LIS) – profound paralysis that results in severely limited or total loss of voluntary motor control. By inferring user intent from task-modulated neurological signals and then translating those intentions into actions, BMIs can enable LIS patients increased autonomy. Significant effort has been devoted to developing BMIs over the last three decades, but only recently have the combined advances in hardware, software, and methodology provided a setting to realize the translation of this research from the lab into practical, real-world applications. Non-invasive methods, such as those based on the electroencephalogram (EEG), offer the only feasible solution for practical use at the moment, but suffer from limited communication rates and susceptibility to environmental noise. Maximization of the efficacy of each decoded intention, therefore, is critical. This thesis addresses the challenge of implementing a BMI intended for practical use with a focus on an autonomous assistive robot application. First an adaptive EEG- based BMI strategy is developed that relies upon code-modulated visual evoked potentials (c-VEPs) to infer user intent. As voluntary gaze control is typically not available to LIS patients, c-VEP decoding methods under both gaze-dependent and gaze- independent scenarios are explored. Adaptive decoding strategies in both offline and online task conditions are evaluated, and a novel approach to assess ongoing online BMI performance is introduced. Next, an adaptive neural network-based system for assistive robot control is presented that employs exploratory learning to achieve the coordinated motor planning needed to navigate toward, reach for, and grasp distant objects. Exploratory learning, or “learning by doing,” is an unsupervised method in which the robot is able to build an internal model for motor planning and coordination based on real-time sensory inputs received during exploration. Finally, a software platform intended for practical BMI application use is developed and evaluated. Using online c-VEP methods, users control a simple 2D cursor control game, a basic augmentative and alternative communication tool, and an assistive robot, both manually and via high-level goal-oriented commands

    BCIs and mobile robots for neurological rehabilitation: practical applications of remote control. Remote control of mobile robots applied in non-invasive BCI for disabled users afflicted by motor neurons diseases

    Get PDF
    This project aims at testing the possible advantages of introducing a mobile robot as a physical input/output device in a Brain Computer Interface (BCI) system. In the proposed system, the actions triggered by the subject’s brain activity results in the motions of a physical device in the real world, and not only in a modification of a graphical interface. A goal-based system for destination detecting and the high entertainment level offered by controlling a mobile robot are hence main features for actually increase patients' life quality leve

    Optimal pseudorandom sequence selection for online c-VEP based BCI control applications

    Get PDF
    <div><p>Background</p><p>In a c-VEP BCI setting, test subjects can have highly varying performances when different pseudorandom sequences are applied as stimulus, and ideally, multiple codes should be supported. On the other hand, repeating the experiment with many different pseudorandom sequences is a laborious process.</p><p>Aims</p><p>This study aimed to suggest an efficient method for choosing the optimal stimulus sequence based on a fast test and simple measures to increase the performance and minimize the time consumption for research trials.</p><p>Methods</p><p>A total of 21 healthy subjects were included in an online wheelchair control task and completed the same task using stimuli based on the m-code, the gold-code, and the Barker-code. Correct/incorrect identification and time consumption were obtained for each identification. Subject-specific templates were characterized and used in a forward-step first-order model to predict the chance of completion and accuracy score.</p><p>Results</p><p>No specific pseudorandom sequence showed superior accuracy on the group basis. When isolating the individual performances with the highest accuracy, time consumption per identification was not significantly increased. The Accuracy Score aids in predicting what pseudorandom sequence will lead to the best performance using only the templates. The Accuracy Score was higher when the template resembled a delta function the most and when repeated templates were consistent. For completion prediction, only the shape of the template was a significant predictor.</p><p>Conclusions</p><p>The simple and fast method presented in this study as the Accuracy Score, allows c-VEP based BCI systems to support multiple pseudorandom sequences without increase in trial length. This allows for more personalized BCI systems with better performance to be tested without increased costs.</p></div

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    Development of a Practical Visual-Evoked Potential-Based Brain-Computer Interface

    Get PDF
    There are many different neuromuscular disorders that disrupt the normal communication pathways between the brain and the rest of the body. These diseases often leave patients in a `locked-in state, rendering them unable to communicate with their environment despite having cognitively normal brain function. Brain-computer interfaces (BCIs) are augmentative communication devices that establish a direct link between the brain and a computer. Visual evoked potential (VEP)- based BCIs, which are dependent upon the use of salient visual stimuli, are amongst the fastest BCIs available and provide the highest communication rates compared to other BCI modalities. However. the majority of research focuses solely on improving the raw BCI performance; thus, most visual BCIs still suffer from a myriad of practical issues that make them impractical for everyday use. The focus of this dissertation is on the development of novel advancements and solutions that increase the practicality of VEP-based BCIs. The presented work shows the results of several studies that relate to characterizing and optimizing visual stimuli. improving ergonomic design. reducing visual irritation, and implementing a practical VEP-based BCI using an extensible software framework and mobile devices platforms

    Neurogaming With Motion-Onset Visual Evoked Potentials (mVEPs): Adults Versus Teenagers

    Get PDF

    Review of real brain-controlled wheelchairs

    Get PDF
    This paper presents a review of the state of the art regarding wheelchairs driven by a brain-computer interface (BCI). Using a brain-controlled wheelchair (BCW), disabled users could handle a wheelchair through their brain activity, granting autonomy to move through an experimental environment. A classification is established, based on the characteristics of the BCW, such as the type of electroencephalographic (EEG) signal used, the navigation system employed by the wheelchair, the task for the participants, or the metrics used to evaluate the performance. Furthermore, these factors are compared according to the type of signal used, in order to clarify the differences among them. Finally, the trend of current research in this field is discussed, as well as the challenges that should be solved in the future

    Cross-Platform Implementation of an SSVEP-Based BCI for the Control of a 6-DOF Robotic Arm

    Full text link
    [EN] Robotics has been successfully applied in the design of collaborative robots for assistance to people with motor disabilities. However, man-machine interaction is difficult for those who suffer severe motor disabilities. The aim of this study was to test the feasibility of a low-cost robotic arm control system with an EEG-based brain-computer interface (BCI). The BCI system relays on the Steady State Visually Evoked Potentials (SSVEP) paradigm. A cross-platform application was obtained in C++. This C++ platform, together with the open-source software Openvibe was used to control a Staubli robot arm model TX60. Communication between Openvibe and the robot was carried out through the Virtual Reality Peripheral Network (VRPN) protocol. EEG signals were acquired with the 8-channel Enobio amplifier from Neuroelectrics. For the processing of the EEG signals, Common Spatial Pattern (CSP) filters and a Linear Discriminant Analysis classifier (LDA) were used. Five healthy subjects tried the BCI. This work allowed the communication and integration of a well-known BCI development platform such as Openvibe with the specific control software of a robot arm such as Staubli TX60 using the VRPN protocol. It can be concluded from this study that it is possible to control the robotic arm with an SSVEP-based BCI with a reduced number of dry electrodes to facilitate the use of the system.Funding for open access charge: Universitat Politecnica de Valencia.Quiles Cucarella, E.; Dadone, J.; Chio, N.; García Moreno, E. (2022). Cross-Platform Implementation of an SSVEP-Based BCI for the Control of a 6-DOF Robotic Arm. Sensors. 22(13):1-26. https://doi.org/10.3390/s22135000126221

    Semi-autonomous robotic wheelchair controlled with low throughput human- machine interfaces

    Get PDF
    For a wide range of people with limited upper- and lower-body mobility, interaction with robots remains a challenging problem. Due to various health conditions, they are often unable to use standard joystick interface, most of wheelchairs are equipped with. To accommodate this audience, a number of alternative human-machine interfaces have been designed, such as single switch, sip-and-puff, brain-computer interfaces. They are known as low throughput interfaces referring to the amount of information that an operator can pass into the machine. Using them to control a wheelchair poses a number of challenges. This thesis makes several contributions towards the design of robotic wheelchairs controlled via low throughput human-machine interfaces: (1) To improve wheelchair motion control, an adaptive controller with online parameter estimation is developed for a differentially driven wheelchair. (2) Steering control scheme is designed that provides a unified framework integrating different types of low throughput human-machine interfaces with an obstacle avoidance mechanism. (3) A novel approach to the design of control systems with low throughput human-machine interfaces has been proposed. Based on the approach, position control scheme for a holonomic robot that aims to probabilistically minimize time to destination is developed and tested in simulation. The scheme is adopted for a real differentially driven wheelchair. In contrast to other methods, the proposed scheme allows to use prior information about the user habits, but does not restrict navigation to a set of pre-defined points, and parallelizes the inference and motion reducing the navigation time. (4) To enable the real time operation of the position control, a high-performance algorithm for single-source any-angle path planning on a grid has been developed. By abandoning the graph model and introducing discrete geometric primitives to represent the propagating wave front, we were able to design a planning algorithm that uses only integer addition and bit shifting. Experiments revealed a significant performance advantage. Several modifications, including optimal and multithreaded implementations, are also presented
    corecore