137 research outputs found

    A 93% efficiency reconfigurable switched-capacitor DC-DC converter using on-chip ferroelectric capacitors

    Get PDF
    Dynamic Voltage Scaling (DVS) has become one of the standard techniques for energy efficient operation of systems by powering circuit blocks at the minimum voltage that meets the desired performance [1]. Switched Capacitor (SC) DC-DC converters have gained significant interest as a promising candidate for an integrated energy conversion solution that eliminates the need for inductors [2,3]. However, SC converters efficiency is limited by the conduction loss, bottom plate parasitic capacitance, gate drive loss in addition to the overhead of the control circuit. Reconfigurable SC converters supporting multi-gain settings have been proposed to allow efficient operation across wide output range [2,4]. Also, High density deep trench capacitors with low bottom plate parasitic capacitance have been utilized in [5] achieving a peak efficiency of 90%. In this work, we exploit on-chip ferroelectric capacitors (Fe-Caps) for charge transfer owing to their high density and extremely low bottom plate parasitic capacitance [6]. High efficiency conversion is achieved by combining the Fe-Caps with multi-gain setting converter in a reconfigurable architecture with dynamic gain selection

    Low-Power Energy Efficient Circuit Techniques for Small IoT Systems

    Full text link
    Although the improvement in circuit speed has been limited in recent years, there has been increased focus on the internet of things (IoT) as technology scaling has decreased circuit size, power usage and cost. This trend has led to the development of many small sensor systems with affordable costs and diverse functions, offering people convenient connection with and control over their surroundings. This dissertation discusses the major challenges and their solutions in realizing small IoT systems, focusing on non-digital blocks, such as power converters and analog sensing blocks, which have difficulty in following the traditional scaling trends of digital circuits. To accommodate the limited energy storage and harvesting capacity of small IoT systems, this dissertation presents an energy harvester and voltage regulators with low quiescent power and good efficiency in ultra-low power ranges. Switched-capacitor-based converters with wide-range energy-efficient voltage-controlled oscillators assisted by power-efficient self-oscillating voltage doublers and new cascaded converter topologies for more conversion ratio configurability achieve efficient power conversion down to several nanowatts. To further improve the power efficiency of these systems, analog circuits essential to most wireless IoT systems are also discussed and improved. A capacitance-to-digital sensor interface and a clocked comparator design are improved by their digital-like implementation and operation in phase and frequency domain. Thanks to the removal of large passive elements and complex analog blocks, both designs achieve excellent area reduction while maintaining state-of-art energy efficiencies. Finally, a technique for removing dynamic voltage and temperature variations is presented as smaller circuits in advanced technologies are more vulnerable to these variations. A 2-D simultaneous feedback control using an on-chip oven control locks the supply voltage and temperature of a small on-chip domain and protects circuits in this locked domain from external voltage and temperature changes, demonstrating 0.0066 V/V and 0.013 °C/°C sensitivities to external changes. Simple digital implementation of the sensors and most parts of the control loops allows robust operation within wide voltage and temperature ranges.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138743/1/wanyeong_1.pd

    Integrated high-voltage switched-capacitor DC-DC converters

    Get PDF
    The focus of this work is on the integrated circuit (IC) level integration of high-voltage switched-capacitor (SC) converters with the goal of fully integrated power management solutions for system-on-chip (SoC) and system-in-pagage (SiP) applications. The full integration of SC converters provides a low cost and compact power supply solution for modern electronics. Currently, there are almost no fully integrated SC converters with input voltages above 5 V. The purpose of this work is to provide solutions for higher input voltages. The increasing challenges of a compact and efficient power supply on the chip are addressed. High-voltage rated components and the increased losses caused by parasitics not only reduce power density but also efficiency. Loss mechanisms in high-voltage SC converters are investigated resulting in an optimized model for high-voltage SC converters. The model developed allows an appropriate comparison of different semiconductor technologies and converter topologies. Methods and design proposals for loss reduction are presented. Control of power switches with their supporting circuits is a further challenge for high-voltage SC converters. The aim of this work is to develop fully integrated SC converters with a wide input voltage range. Different topologies and concepts are investigated. The implemented fully integrated SC converter has an input voltage range of 2 V to 13 V. This is twice the range of existing converters. This is achieved by an implemented buck and boost mode as well as 17 conversion ratios. Experimental results show a peak efficiency of 81.5%. This is the highest published peak efficiency for fully integrated SC converters with an input voltage > 5V. With the help of the model developed in this work, a three-phase SC converter topology for input voltages up to 60 V is derived and then investigated and discussed. Another focus of this work is on the power supply of sensor nodes and smart home applications with low-power consumption. Highly integrated micro power supplies that operate directly from mains voltage are particularly suitable for these applications. The micro power supply proposed in this work utilizes the high-voltage SC converter developed. The output power is 14 times higher and the power density eleven times higher than prior work. Since plenty of power switches are built into modern multi-ratio SC converters, the switch control circuits must be optimized with regard to low-power consumption and area requirements. In this work, different level shifter concepts are investigated and a low-power high-voltage level shifter for 50 V applications based on a capacitive level shifter is introduced. The level shifter developed exceeds the state of the art by a factor of more than eleven with a power consumption of 2.1pJ per transition. A propagation delay of 1.45 ns is achieved. The presented high-voltage level shifter is the first level shifter for 50 V applications with a propagation delay below 2 ns and power consumption below 20pJ per transition. Compared to the state of the art, the figure of merit is significantly improved by a factor of two. Furthermore, various charge pump concepts are investigated and evaluated within the context of this work. The charge pump, optimized in this work, improves the state of the art by a factor of 1.6 in terms of efficiency. Bidirectional switches must be implemented at certain locations within the power stage to prevent reverse conduction. The topology of a bidirectional switch developed in this work reduces the dynamic switching losses by 70% and the area consumption including the required charge pumps by up to 65% compared to the state of the art. These improvements make it possible to control the power switches in a fast and efficient way. Index terms — integrated power management, high input voltage, multi-ratio SC converter, level shifter, bidirectional switch, micro power supplyDer Schwerpunkt dieser Arbeit liegt auf der Erforschung von Switched-Capacitor (SC) Spannungswandler für höhere Eingangsspannungen. Ziel der Arbeit ist es Lösungen für ein voll auf dem Halbleiterchip integriertes Power Management anzubieten um System on Chip (SoC) und System in Package (SiP) zu ermöglichen. Die vollständige Integration von SC Spannungswandlern bietet eine kostengünstige und kompakte Spannungsversorgungslösung für moderne Elektronik. Der kontinuierliche Trend hin zu immer kompakterer Elektronik und hin zu höheren Versorgungsspannungen wird in dieser Arbeit adressiert. Aktuell gibt es sehr wenige voll integrierte SC Spannungswandler mit einer Eingangsspannung größer 5 V. Die mit steigender Spannung zunehmenden Herausforderungen an eine kompakte und effiziente Spannungsversorgung auf dem Chip werden in dieser Arbeit untersucht. Die höhere Spannungsfestigkeit der verwendeten Komponenten korreliert mit erhöhten Verlusten und erhöhtem Flächenverbrauch, welche sich negativ auf den Wirkungsgrad und die Leistungsdichte von SC Spannungswandlern auswirkt. Bestandteil dieser Arbeit ist die Untersuchung dieser Verlustmechanismen und die Entwicklung eines Modells, welches speziell für höhere Spannungen optimiert wurde. Das vorgestellte Modell ermöglicht zum einen die optimale Dimensionierung der Spannungswandler und zum anderen faire Vergleichsmöglichkeiten zwischen verschiedenen SC Spannungswandler Architekturen und Halbleitertechnologien. Demnach haben sowohl die gewählte Architektur und Halbleitertechnologie als auch die Kombination aus gewählter Architektur und Technologie erheblichen Einfluss auf die Leistungsfähigkeit der Spannungswandler. Ziel dieser Arbeit ist die Vollintegration eines SC Spannungswandlers mit einem weiten und hohen Eingangsspannungsbereich zu entwickeln. Dazu wurden verschiedene Schaltungsarchitekturen und Konzepte untersucht. Der vorgestellte vollintegrierte SC Spannungswandler weist einen Eingangsspannungsbereich von 2 V bis 13 V auf. Dies ist eine Verdopplung im Vergleich zum Stand der Technik. Dies wird durch einen implementierten Auf- und Abwärtswandler-Betriebsmodus sowie 17 Übersetzungsverhältnisse erreicht. Experimentelle Ergebnisse zeigen einen Spitzenwirkungsgrad von 81.5%. Dies ist der höchste veröffentlichte Spitzenwirkungsgrad für vollintegrierte SC Spannungswandler mit einer Eingangsspannung größer 5 V. Mit Hilfe des in dieser Arbeit entwickelten Modells wird eine dreiphasige SC Spannungswandler Architektur für Eingangsspannungen bis zu 60 V entwickelt und anschließend analysiert und diskutiert. Ein weiterer Schwerpunkt dieser Arbeit adressiert die kompakte Spannungsversorgung von Sensorknoten mit geringem Stromverbrauch, für Anwendungen wie Smart Home und Internet der Dinge (IoT). Für diese Anwendungen eignen sich besonders gut hochintegrierte Mikro-Netzteile, welche direkt mit dem 230VRMS-Hausnetz (bzw. 110VRMS) betrieben werden können. Das in dieser Arbeit vorgestellte Mikro-Netzteil nutzt einen in dieser Arbeit entwickelten SC Spannungswandler für hohe Eingangsspannungen. Die damit erzielte Ausgangsleistung ist 14-mal größer im Vergleich zum Stand der Technik. In SC Spannungswandlern für hohe Spannungen werden viele Leistungsschalter benötigt, deshalb muss bei der Schalteransteuerung besonders auf einen geringen Leistungsverbrauch und Flächenbedarf der benötigten Schaltungsblöcke geachtet werden. Gegenstand dieser Arbeit ist sowohl die Analyse verschiedener Konzepte für Pegelumsetzer, als auch die Entwicklung eines stromsparenden Pegelumsetzers für 50 V-Anwendungen. Mit einer Leistungsaufnahme von 2.1pJ pro Signalübergang reduziert der entwickelte Pegelumsetzer mit kapazitiver Kopplung um mehr als elfmal die Leistungsaufnahme im Vergleich zum Stand der Technik. Die erreichte Laufzeitverzögerung beträgt 1.45 ns. Damit erzielt der vorgestellte Hochspannungs-Pegelumsetzer als erster Pegelumsetzer für 50 V-Anwendungen eine Laufzeitverzögerung unter 2 ns und eine Leistungsaufnahme unter 20pJ pro Signalwechsel. Im Vergleich zum Stand der Technik wird die Leistungskennzahl um den Faktor zwei deutlich verbessert. Darüber hinaus werden im Rahmen dieser Arbeiten verschiedene Ladungspumpenkonzepte untersucht und bewertet. Die in dieser Arbeit optimierte Ladungspumpe verbessert den Stand der Technik um den Faktor 1.6 in Bezug auf den Wirkungsgrad. Die in dieser Arbeit entwickelte Schaltungsarchitektur eines bidirektionalen Schalters reduziert die dynamischen Schaltverluste um 70% und den benötigten Flächenbedarf inklusive der benötigten Ladungspumpe um bis zu 65% gegenüber dem Stand der Technik. Diese Verbesserungen ermöglichen es, die Leistungsschalter schnell und effizient anzusteuern. Schlagworte — Integriertes Powermanagement, hohe Eingangsspannung, Multi-Ratio SC Spannungswan- dler, Pegelumsetzer, bidirektionaler Schalter, Mikro-Netztei

    Power Management Techniques for Supercapacitor Based IoT Applications

    Get PDF
    University of Minnesota Ph.D. dissertation. January 2018. Major: Electrical Engineering. Advisor: Ramesh Harjani. 1 computer file (PDF); xi, 89 pages.The emerging internet of things (IoT) technology will connect many untethered devices, e.g. sensors, RFIDs and wearable devices, to improve health lifestyle, automotive, smart buildings, etc. This thesis proposes one typical application of IoT: RFID for blood temperature monitoring. Once the blood is donated and sealed in a blood bag, it is required to be stored in a certain temperature range (+2~+6°C for red cell component) before distribution. The proposed RFID tag is intended to be attached to the blood bag and continuously monitor the environmental temperature during transportation and storage. When a reader approaches, the temperature data is read out and the tag is fully recharged wirelessly within 2 minutes. Once the blood is distributed, the tag can be reset and reused again. Such a biomedical application has a strong aversion to toxic chemicals, so a batteryless design is required for the RFID tag. A passive RFID tag, however, cannot meet the longevity requirement for the monitoring system (at least 1 week). The solution of this thesis is using a supercapacitor (supercap) instead of a battery as the power supply, which not only lacks toxic heavy metals, but also has quicker charge time (~1000x over batteries), larger operating temperature range (-40~+65°C), and nearly infinite shelf life. Although nearly perfect for this RFID application, a supercap has its own disadvantages: lower energy density (~30x smaller than batteries) and unstable output voltage. To solve the quick charging and long lasting requirements of the RFID system, and to overcome the intrinsic disadvantages of supercaps, an overall power management solution is proposed in this thesis. A reconfigurable switched-capacitor DC-DC converter is proposed to convert the unstable supercap's voltage (3.5V~0.5V) to a stable 1V output voltage efficiently to power the subsequent circuits. With the help of the 6 conversion ratios (3 step-ups, 3 step-downs), voltage protection techniques, and low power designs, the converter can extract 98% of the stored energy from the supercap, and increase initial energy by 96%. Another switched-inductor buck-boost converter is designed to harvest the ambient RF energy to charge the supercap quickly. Because of the variation of the reader distance and incident wave angle, the input power level also has large fluctuation (5uW~5mW). The harvester handles this large power range by a power estimator enhanced MPPT controller with an adaptive integration capacitor array. Also, the contradiction between low power and high tracking speed is improved by adaptive MPPT frequency

    Power Management ICs for Internet of Things, Energy Harvesting and Biomedical Devices

    Get PDF
    This dissertation focuses on the power management unit (PMU) and integrated circuits (ICs) for the internet of things (IoT), energy harvesting and biomedical devices. Three monolithic power harvesting methods are studied for different challenges of smart nodes of IoT networks. Firstly, we propose that an impedance tuning approach is implemented with a capacitor value modulation to eliminate the quiescent power consumption. Secondly, we develop a hill-climbing MPPT mechanism that reuses and processes the information of the hysteresis controller in the time-domain and is free of power hungry analog circuits. Furthermore, the typical power-performance tradeoff of the hysteresis controller is solved by a self-triggered one-shot mechanism. Thus, the output regulation achieves high-performance and yet low-power operations as low as 12 µW. Thirdly, we introduce a reconfigurable charge pump to provide the hybrid conversion ratios (CRs) as 1⅓× up to 8× for minimizing the charge redistribution loss. The reconfigurable feature also dynamically tunes to maximum power point tracking (MPPT) with the frequency modulation, resulting in a two-dimensional MPPT. Therefore, the voltage conversion efficiency (VCE) and the power conversion efficiency (PCE) are enhanced and flattened across a wide harvesting range as 0.45 to 3 V. In a conclusion, we successfully develop an energy harvesting method for the IoT smart nodes with lower cost, smaller size, higher conversion efficiency, and better applicability. For the biomedical devices, this dissertation presents a novel cost-effective automatic resonance tracking method with maximum power transfer (MPT) for piezoelectric transducers (PT). The proposed tracking method is based on a band-pass filter (BPF) oscillator, exploiting the PT’s intrinsic resonance point through a sensing bridge. It guarantees automatic resonance tracking and maximum electrical power converted into mechanical motion regardless of process variations and environmental interferences. Thus, the proposed BPF oscillator-based scheme was designed for an ultrasonic vessel sealing and dissecting (UVSD) system. The sealing and dissecting functions were verified experimentally in chicken tissue and glycerin. Furthermore, a combined sensing scheme circuit allows multiple surgical tissue debulking, vessel sealer and dissector (VSD) technologies to operate from the same sensing scheme board. Its advantage is that a single driver controller could be used for both systems simplifying the complexity and design cost. In a conclusion, we successfully develop an ultrasonic scalpel to replace the other electrosurgical counterparts and the conventional scalpels with lower cost and better functionality

    Addressing On-Chip Power Conversion and Dissipation Issues in Many-Core System-on-a-Chip based on Conventional Silicon and Emerging Nanotechnologies

    Get PDF
    Title from PDF of title page viewed August 27, 2018Dissertation advisor: Masud H ChowdhuryVitaIncludes bibliographical references (pages 158-163)Thesis (Ph.D.)--School of Computing and Engineering and Department of Physics and Astronomy. University of Missouri--Kansas City, 2017Integrated circuits (ICs) are moving towards system-on-a-chip (SOC) designs. SOC allows various small and large electronic systems to be implemented in a single chip. This approach enables the miniaturization of design blocks that leads to high density transistor integration, faster response time, and lower fabrication costs. To reap the benefits of SOC and uphold the miniaturization of transistors, innovative power delivery and power dissipation management schemes are paramount. This dissertation focuses on on-chip integration of power delivery systems and managing power dissipation to increase the lifetime of energy storage elements. We explore this problem from two different angels: On-chip voltage regulators and power gating techniques. On-chip voltage regulators reduce parasitic effects, and allow faster and efficient power delivery for microprocessors. Power gating techniques, on the other hand, reduce the power loss incurred by circuit blocks during standby mode. Power dissipation (Ptotal = Pstatic and Pdynamic) in a complementary metal-oxide semiconductor (CMOS) circuit comes from two sources: static and dynamic. A quadratic dependency on the dynamic switching power and a more than linear dependency on static power as a form of gate leakage (subthreshold current) exist. To reduce dynamic power loss, the supply power should be reduced. A significant reduction in power dissipation occurs when portions of a microprocessor operate at a lower voltage level. This reduction in supply voltage is achieved via voltage regulators or converters. Voltage regulators are used to provide a stable power supply to the microprocessor. The conventional off-chip switching voltage regulator contains a passive floating inductor, which is difficult to be implemented inside the chip due to excessive power dissipation and parasitic effects. Additionally, the inductor takes a very large chip area while hampering the scaling process. These limitations make passive inductor based on-chip regulator design very unattractive for SOC integration and multi-/many-core environments. To circumvent the challenges, three alternative techniques based on active circuit elements to replace the passive LC filter of the buck convertor are developed. The first inductorless on-chip switching voltage regulator architecture is based on a cascaded 2nd order multiple feedback (MFB) low-pass filter (LPF). This design has the ability to modulate to multiple voltage settings via pulse with modulation (PWM). The second approach is a supplementary design utilizing a hybrid low drop-out scheme to lower the output ripple of the switching regulator over a wider frequency range. The third design approach allows the integration of an entire power management system within a single chipset by combining a highly efficient switching regulator with an intermittently efficient linear regulator (area efficient), for robust and highly efficient on-chip regulation. The static power (Pstatic) or subthreshold leakage power (Pleak) increases with technology scaling. To mitigate static power dissipation, power gating techniques are implemented. Power gating is one of the popular methods to manage leakage power during standby periods in low-power high-speed IC design. It works by using transistor based switches to shut down part of the circuit block and put them in the idle mode. The efficiency of a power gating scheme involves minimum Ioff and high Ion for the sleep transistor. A conventional sleep transistor circuit design requires an additional header, footer, or both switches to turn off the logic block. This additional transistor causes signal delay and increases the chip area. We propose two innovative designs for next generation sleep transistor designs. For an above threshold operation, we present a sleep transistor design based on fully depleted silicon-on-insulator (FDSOI) device. For a subthreshold circuit operation, we implement a sleep transistor utilizing the newly developed silicon-on ferroelectric-insulator field effect transistor (SOFFET). In both of the designs, the ability to control the threshold voltage via bias voltage at the back gate makes both devices more flexible for sleep transistors design than a bulk MOSFET. The proposed approaches simplify the design complexity, reduce the chip area, eliminate the voltage drop by sleep transistor, and improve power dissipation. In addition, the design provides a dynamically controlled Vt for times when the circuit needs to be in a sleep or switching mode.Introduction -- Background and literature review -- Fully integrated on-chip switching voltage regulator -- Hybrid LDO voltage regulator based on cascaded second order multiple feedback loop -- Single and dual output two-stage on-chip power management system -- Sleep transistor design using double-gate FDSOI -- Subthreshold region sleep transistor design -- Conclusio

    Miniaturized, low-voltage power converters with fast dynamic response

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 216-224).This thesis introduces a two-stage architecture that combines the strengths of switched capacitor (SC) techniques (small size, light-load performance) with the high efficiency and regulation capability of switch-mode power converters. The resulting designs have a superior efficient-power density trade-off over traditional designs. These power converters can provide numerous lowvoltage outputs over a wide input voltage range with a very fast dynamic response, which are ideal for powering logic devices in the mobile and high-performance computing markets. Both design and fabrication considerations for power converters using this architecture are addressed. The results are demonstrated in a 2.4 W dc-dc converter implemented in a 180 nm CMOS IC process and co-packaged with its passive components for high-performance. The converter operates from an input voltage of 2.7 V to 5.5 V with an output voltage of /= 80% efficiency.by David Giuliano.Ph.D

    Optimized Multi-input Single-output Energy Harvesting System

    Get PDF
    The energy harvesting sources has been introduced as a promising alternative for battery power. However, harvested energy is inherently sporadic, unstable, and unreliable. For this reason, a non-volatile processor has been previously proposed to bridge the intermittent executions in frequent power losses. Nonetheless, recurrent power failures reduce overall system performance which has forced researchers to look into multi-input energy harvesting systems. The purpose of this study is to investigate the possible solutions to improve the reliability and functionality of battery-less devices. This study has two major objectives: (1) implementing periodic checkpointing on WISP5, and (2) proposing optimized multi-input single-output energy harvesting system. The WISP5 was acquired from the Sensor Systems Laboratory, University of Washington, as a viable RFID energy harvesting system to implement software checkpointing techniques. We performed the periodic checkpointing every 50ms based on the RFID power fluctuation style. Then, we explored a number of possible maximum power point tracking techniques to extract maximum power from harvesters. As a result, we verified that the open circuit voltage control is the most cost effective and efficient technique for both thermoelectric (TEG) and photovoltaic (PV) . Also, we revealed that in low-level input voltages, following the fact that the maximum power extraction can be achieved at half of open circuit voltage does not result in maximum possible efficiency. Therefore, by adjusting the converter input voltage at about 66% of open circuit voltage, we improved power efficiency by about 18%.Electrical Engineerin

    Triple-Mode Switched-Inductor-Capacitor DC-DC Buck Converter with Reusable Flying Capacitor and Bang-Bang Zero-Current Detector for Wide Load Current Range

    Get PDF
    Although the capacity of a battery with a small form factor is extremely low, demand for long usage time of Internet of Things (IoT) products is increasing. Owing to this limitation of the battery, power management integrated circuits (PMICs) are used for extending the battery usage time with high efficiency. In particular, since IoT devices are mostly in the sleep mode in the idle state, PMICs should achieve high efficiency for ultralight loads in the sleep mode as well as for heavy loads in the active mode. In this paper, an accurate bang-bang zero-current detector (to prevent a reverse inductor current) and a triple-mode switched inductor-capacitor dc-dc buck converter with a reusable flying capacitor are presented; these techniques can maintain high efficiency over a wide load current range. The proposed buck converter was fabricated in a 0.18-mu m 1P4M CMOS process. A power conversion efficiency exceeding 85% was achieved in the load range of 100 mu A to 300 mA
    corecore