34 research outputs found

    Low power low voltage quadrature RC oscillators for modern RF receivers

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de ComputadoresThis thesis proposes a study of three different RC oscillators, two relaxation and a ring oscillator. All the circuits are implemented using UMC 130 nm CMOS technology with a supply voltage of 1.2 V. We present a wideband MOS current/voltage controlled quadrature oscillator constituted by two multivibrators. Two different forms of coupling named, soft (traditional)and hard (proposed) are differentiated and investigated. It is found that hard coupling reduces the quadrature error and results in a low phase-noise (about 2 dB improvement) with respect to soft coupling. The behaviour of the singular and coupled multivibrators is investigated, when an external synchronizing harmonic is applied. We introduce a new RC relaxation oscillator with pulse self biasing, to reduce power consumption, and with harmonic ltering and resistor feedback, to reduce phase-noise. The designed circuit has a very low phase-noise, -132.6 dBc/Hz @ 10 MHz offset, and the power consumption is only 1 mW, which leads to a gure of merit (FOM) of -159.1 dBc/Hz. The nal circuit is a two integrator fully implemented in CMOS technology, with low power consumption. The respective layout is made and occupies a total area of5.856x10-3 mm2, post-layout simulation is also done

    Multi-Loop-Ring-Oscillator Design and Analysis for Sub-Micron CMOS

    Get PDF
    Ring oscillators provide a central role in timing circuits for today?s mobile devices and desktop computers. Increased integration in these devices exacerbates switching noise on the supply, necessitating improved supply resilience. Furthermore, reduced voltage headroom in submicron technologies limits the number of stacked transistors available in a delay cell. Hence, conventional single-loop oscillators offer relatively few design options to achieve desired specifications, such as supply rejection. Existing state-of-the-art supply-rejection- enhancement methods include actively regulating the supply with an LDO, employing a fully differential or current-starved delay cell, using a hi-Z voltage-to-current converter, or compensating/calibrating the delay cell. Multiloop ring oscillators (MROs) offer an additional solution because by employing a more complex ring-connection structure and associated delay cell, the designer obtains an additional degree of freedom to meet the desired specifications. Designing these more complex multiloop structures to start reliably and achieve the desired performance requires a systematic analysis procedure, which we attack on two fronts: (1) a generalized delay-cell viewpoint of the MRO structure to assist in both analysis and circuit layout, and (2) a survey of phase-noise analysis to provide a bank of methods to analyze MRO phase noise. We distill the salient phase-noise-analysis concepts/key equations previously developed to facilitate MRO and other non-conventional oscillator analysis. Furthermore, our proposed analysis framework demonstrates that all these methods boil down to obtaining three things: (1) noise modulation function (NMF), (2) noise transfer function (NTF), and (3) current-controlled-oscillator gain (KICO). As a case study, we detail the design, analysis, and measurement of a proposed multiloop ring oscillator structure that provides improved power-supply isolation (more than 20dB increase in supply rejection over a conventional-oscillator control case fabricated on the same test chip). Applying our general multi-loop-oscillator framework to this proposed MRO circuit leads both to design-oriented expressions for the oscillation frequency and supply rejection as well as to an efficient layout technique facilitating cross-coupling for improved quadrature accuracy and systematic, substantially simplified layout effort

    Multi-Loop-Ring-Oscillator Design and Analysis for Sub-Micron CMOS

    Get PDF
    Ring oscillators provide a central role in timing circuits for today?s mobile devices and desktop computers. Increased integration in these devices exacerbates switching noise on the supply, necessitating improved supply resilience. Furthermore, reduced voltage headroom in submicron technologies limits the number of stacked transistors available in a delay cell. Hence, conventional single-loop oscillators offer relatively few design options to achieve desired specifications, such as supply rejection. Existing state-of-the-art supply-rejection- enhancement methods include actively regulating the supply with an LDO, employing a fully differential or current-starved delay cell, using a hi-Z voltage-to-current converter, or compensating/calibrating the delay cell. Multiloop ring oscillators (MROs) offer an additional solution because by employing a more complex ring-connection structure and associated delay cell, the designer obtains an additional degree of freedom to meet the desired specifications. Designing these more complex multiloop structures to start reliably and achieve the desired performance requires a systematic analysis procedure, which we attack on two fronts: (1) a generalized delay-cell viewpoint of the MRO structure to assist in both analysis and circuit layout, and (2) a survey of phase-noise analysis to provide a bank of methods to analyze MRO phase noise. We distill the salient phase-noise-analysis concepts/key equations previously developed to facilitate MRO and other non-conventional oscillator analysis. Furthermore, our proposed analysis framework demonstrates that all these methods boil down to obtaining three things: (1) noise modulation function (NMF), (2) noise transfer function (NTF), and (3) current-controlled-oscillator gain (KICO). As a case study, we detail the design, analysis, and measurement of a proposed multiloop ring oscillator structure that provides improved power-supply isolation (more than 20dB increase in supply rejection over a conventional-oscillator control case fabricated on the same test chip). Applying our general multi-loop-oscillator framework to this proposed MRO circuit leads both to design-oriented expressions for the oscillation frequency and supply rejection as well as to an efficient layout technique facilitating cross-coupling for improved quadrature accuracy and systematic, substantially simplified layout effort

    Integrated RF oscillators and LO signal generation circuits

    Get PDF
    This thesis deals with fully integrated LC oscillators and local oscillator (LO) signal generation circuits. In communication systems a good-quality LO signal for up- and down-conversion in transmitters is needed. The LO signal needs to span the required frequency range and have good frequency stability and low phase noise. Furthermore, most modern systems require accurate quadrature (IQ) LO signals. This thesis tackles these challenges by presenting a detailed study of LC oscillators, monolithic elements for good-quality LC resonators, and circuits for IQ-signal generation and for frequency conversion, as well as many experimental circuits. Monolithic coils and variable capacitors are essential, and this thesis deals with good structures of these devices and their proper modeling. As experimental test devices, over forty monolithic inductors and thirty varactors have been implemented, measured and modeled. Actively synthesized reactive elements were studied as replacements for these passive devices. At first glance these circuits show promising characteristics, but closer noise and nonlinearity analysis reveals that these circuits suffer from high noise levels and a small dynamic range. Nine circuit implementations with various actively synthesized variable capacitors were done. Quadrature signal generation can be performed with three different methods, and these are analyzed in the thesis. Frequency conversion circuits are used for alleviating coupling problems or to expand the number of frequency bands covered. The thesis includes an analysis of single-sideband mixing, frequency dividers, and frequency multipliers, which are used to perform the four basic arithmetical operations for the frequency tone. Two design cases are presented. The first one is a single-sideband mixing method for the generation of WiMedia UWB LO-signals, and the second one is a frequency conversion unit for a digital period synthesizer. The last part of the thesis presents five research projects. In the first one a temperature-compensated GaAs MESFET VCO was developed. The second one deals with circuit and device development for an experimental-level BiCMOS process. A cable-modem RF tuner IC using a SiGe process was developed in the third project, and a CMOS flip-chip VCO module in the fourth one. Finally, two frequency synthesizers for UWB radios are presented

    High-frequency oscillator design for integrated transceivers

    Get PDF

    Frequency Synthesizers and Oscillator Architectures Based on Multi-Order Harmonic Generation

    Get PDF
    Frequency synthesizers are essential components for modern wireless and wireline communication systems as they provide the local oscillator signal required to transmit and receive data at very high rates. They are also vital for computing devices and microcontrollers as they generate the clocks required to run all the digital circuitry responsible for the high speed computations. Data rates and clocking speeds are continuously increasing to accommodate for the ever growing demand on data and computational power. This places stringent requirements on the performance metrics of frequency synthesizers. They are required to run at higher speeds, cover a wide range of frequencies, provide a low jitter/phase noise output and consume minimum power and area. In this work, we present new techniques and architectures for implementing high speed frequency synthesizers which fulfill the aforementioned requirements. We propose a new architecture and design approach for the realization of wideband millimeter-wave frequency synthesizers. This architecture uses two-step multi-order harmonic generation of a low frequency phase-locked signal to generate wideband mm-wave frequencies. A prototype of the proposed system is designed and fabricated in 90nm Complementary Metal Oxide Semiconductor (CMOS) technology. Measurement results demonstrated that a very wide tuning range of 5 to 32 GHz can be achieved, which is costly to implement using conventional techniques. Moreover the power consumption per octave resembles that of state-of-the art reports. Next, we propose the N-Push cyclic coupled ring oscillator (CCRO) architecture to implement two high performance oscillators: (1) a wideband N-Push/M-Push CCRO operating from 3.16-12.8GHz implemented by two harmonic generation operations using the availability of different phases from the CCRO, and (2) a 13-25GHz millimeter-wave N-Push CCRO with a low phase noise performance of -118dBc/Hz at 10MHz. The proposed oscillators achieve low phase noise with higher FOM than state of the art work. Finally, we present some improvement techniques applied to the performance of phase locked loops (PLLs). We present an adaptive low pass filtering technique which can reduce the reference spur of integer-N charge-pump based PLLs by around 20dB while maintaining the settling time of the original PLL. Another PLL is presented, which features very low power consumption targeting the Medical Implantable Communication Standard. It operates at 402-405 MHz while consuming 600microW from a 1V supply

    CMOS radio frequency circuits for short-range direct-conversion receivers

    Get PDF
    The research described in this thesis is focused on the design and implementation of radio frequency (RF) circuits for direct-conversion receivers. The main interest is in RF front-end circuits, which contain low-noise amplifiers, downconversion mixers, and quadrature local oscillator signal generation circuits. Three RF front-end circuits were fabricated in a short-channel CMOS process and experimental results are presented. A low-noise amplifier (LNA) is typically the first amplifying block in the receiver. A large number of LNAs have been reported in the literature. In this thesis, wideband LNA structures are of particular interest. The most common and relevant LNA topologies are analyzed in detail in the frequency domain and theoretical limitations are found. New LNA structures are presented and a comparison to the ones found in the literature is made. In this work, LNAs are implemented with downconversion mixers as RF front-ends. The designed mixers are based on the commonly used Gilbert cell. Different mixer implementation alternatives are presented and the design of the interface between the LNA and the downconversion mixer is discussed. In this work, the quadrature local oscillator signal is generated either by using frequency dividers or polyphase filters (PPF). Different possibilities for implementing frequency dividers are briefly described. Polyphase filters were already introduced by the 1970s and integrated circuit (IC) realizations to generate quadrature signals have been published since the mid-1990s. Although several publications where the performance of the PPFs has been studied either by theoretical calculations or simulations can be found in the literature, none of them covers all the relevant design parameters. In this thesis, the theory behind the PPFs is developed such that all the relevant design parameters needed in the practical circuit design have been calculated and presented with closed-form equations whenever possible. Although the main focus was on twoand three-stage PPFs, which are the most common ones encountered in practical ICs, the presented calculation methods can be extended to analyze the performance of multistage PPFs as well. The main application targets of the circuits presented in this thesis are the short-range wireless sensor system and ultrawideband (UWB). Sensors are capable of monitoring temperature, pressure, humidity, or acceleration, for example. The amount of transferred data is typically small and therefore a modest bit rate, less than 1 Mbps, is adequate. The sensor system applied in this thesis operates at 2.4-GHz ISM band (Industrial, Scientific, and Medical). Since the sensors must be able to operate independently for several years, extremely low power consumption is required. In sensor radios, the receiver current consumption is dominated by the blocks and elements operating at the RF. Therefore, the target was to develop circuits that can offer satisfactory performance with a current consumption level that is small compared to other receivers targeted for common cellular systems. On the other hand, there is a growing need for applications that can offer an extremely high data rate. UWB is one example of such a system. At the moment, it can offer data rates of up to 480 Mbps. There is a frequency spectrum allocated for UWB systems between 3.1 and 10.6 GHz. The UWB band is further divided into several narrower band groups (BG), each occupying a bandwidth of approximately 1.6 GHz. In this work, a direct-conversion RF front-end is designed for a dual-band UWB receiver, which operates in band groups BG1 and BG3, i.e. at 3.1 – 4.8 GHz and 6.3 – 7.9 GHz frequency areas, respectively. Clearly, an extremely wide bandwidth combined with a high operational frequency poses challenges for circuit design. The operational bandwidths and the interfaces between the circuit blocks need to be optimized to cover the wanted frequency areas. In addition, the wideband functionality should be achieved without using a number of on-chip inductors in order to minimize the die area, and yet the power consumption should be kept as small as possible. The characteristics of the two main target applications are quite different from each other with regard to power consumption, bandwidth, and operational frequency requirements. A common factor for both is their short, i.e. less than 10 meters, range. Although the circuits presented in this thesis are targeted on the two main applications mentioned above, they can be utilized in other kind of wireless communication systems as well. The performance of three experimental circuits was verified with measurements and the results are presented in this work. Two of them have been a part of a whole receiver including baseband amplifiers and filters and analog-to-digital converters. Experimental circuits were fabricated in a 0.13-µm CMOS process. In addition, this thesis includes design examples where new circuit ideas and implementation possibilities are introduced by using 0.13-µm and 65-nm CMOS processes. Furthermore, part of the theory presented in this thesis is validated with design examples in which actual IC component models are used.Tässä väitöskirjassa esitetty tutkimus keskittyy suoramuunnosvastaanottimen radiotaajuudella (radio frequency, RF) toimivien piirien suunnitteluun ja toteuttamiseen. Työ keskittyy vähäkohinaiseen vahvistimeen (low-noise amplifier, LNA), alassekoittajaan ja kvadratuurisen paikallisoskillaattorisignaalin tuottavaan piiriin. Työssä toteutettiin kolme RF-etupäätä erittäin kapean viivanleveyden CMOS-prosessilla, ja niiden kokeelliset tulokset esitetään. Vähäkohinainen vahvistin on yleensä ensimmäinen vahvistava lohko vastaanottimessa. Useita erilaisia vähäkohinaisia vahvistimia on esitetty kirjallisuudessa. Tämän työn kohteena ovat eritoten laajakaistaiset LNA-rakenteet. Tässä työssä analysoidaan taajuustasossa yleisimmät ja oleellisimmat LNA-topologiat. Lisäksi uusia LNA-rakenteita on esitetty tässä työssä ja niitä on verrattu muihin kirjallisuudessa esitettyihin piireihin. Tässä työssä LNA:t on toteutettu yhdessä alassekoittimen kanssa muodostaen RF-etupään. Työssä suunnitellut alassekoittimet perustuvat yleisesti käytettyyn Gilbertin soluun. Erilaisia sekoittajan suunnitteluvaihtoehtoja ja LNA:n ja alassekoittimen välisen rajapinnan toteutustapoja on esitetty. Tässä työssä kvadratuurinen paikallisoskillaattorisignaali on muodostettu joko käyttämällä taajuusjakajia tai monivaihesuodattimia. Erilaisia taajuusjakajia ja niiden toteutustapoja käsitellään yleisellä tasolla. Monivaihesuodatinta, joka on alunperin kehitetty jo 1970-luvulla, on käytetty integroiduissa piireissä kvadratuurisignaalin tuottamiseen 1990-luvun puolivälistä lähtien. Kirjallisuudesta löytyy lukuisia artikkeleita, joissa monivaihesuodattimen toimintaa on käsitelty teoreettisesti laskien ja simuloinnein. Kuitenkaan kaikkia sen suunnitteluparametreja ei tähän mennessä ole käsitelty. Tässä työssä monivaihesuodattimen teoriaa on kehitetty edelleen siten, että käytännön piirisuunnittelussa tarvittavat oleelliset parametrit on analysoitu ja suunnitteluyhtälöt on esitetty suljetussa muodossa aina kuin mahdollista. Vaikka työssä on keskitytty yleisimpiin eli kaksi- ja kolmiasteisiin monivaihesuodattimiin, on työssä esitetty menetelmät, joilla laskentaa voidaan jatkaa aina useampiasteisiin suodattimiin asti. Työssä esiteltyjen piirien pääkohteina ovat lyhyen kantaman sensoriradio ja erittäin laajakaistainen järjestelmä (ultrawideband, UWB). Sensoreilla voidaan tarkkailla esimerkiksi ympäristön lämpötilaa, kosteutta, painetta tai kiihtyvyyttä. Siirrettävän tiedon määrä on tyypillisesti vähäistä, jolloin pieni tiedonsiirtonopeus, alle 1 megabitti sekunnissa, on välttävä. Tämän työn kohteena oleva sensoriradiojärjestelmä toimii kapealla kaistalla 2,4 gigahertsin ISM-taajuusalueella (Industrial, Scientific, and Medical). Koska sensorien tavoitteena on toimia itsenäisesti ilman pariston vaihtoa useita vuosia, täytyy niiden kuluttaman virran olla erittäin vähäistä. Sensoriradiossa vastaanottimen tehonkulutuksen kannalta määräävässä asemassa ovat radiotaajuudella toimivat piirit. Tavoitteena oli tutkia ja kehittää piirirakenteita, joilla päästään tyydyttävään suorituskykyyn tehonkulutuksella, joka on vähäinen verrattuna muiden tavallisten langattomien tiedonsiirtojärjestelmien radiovastaanottimiin. Toisaalta viime aikoina on kasvanut tarvetta myös järjestelmille, jotka kykenevät tarjoamaan erittäin korkean tiedonsiirtonopeuden. UWB on esimerkki tällaisesta järjestelmästä. Tällä hetkellä se tarjoaa tiedonsiirtonopeuksia aina 480 megabittiin sekunnissa. UWB:lle on varattu taajuusalueita 3,1 ja 10,6 gigahertsin taajuuksien välillä. Kyseinen kaista on edelleen jaettu pienempiin taajuusryhmiin (band group, BG), joiden kaistanleveys on noin 1,6 gigahertsiä. Tässä työssä on toteutettu RF-etupää radiovastaanottimeen, joka pystyy toimimaan BG1:llä ja BG3:lla eli taajuusalueilla 3,1 - 4,7 GHz ja 6,3 - 7,9 GHz. Erittäin suuri kaistanleveys yhdistettynä korkeaan toimintataajuuteen tekee radiotaajuuspiirien suunnittelusta haasteellista. Piirirakenteiden toimintakaistat ja piirien väliset rajapinnat tulee optimoida riittävän laajoiksi käyttämättä kuitenkaan liian montaa piille integroitua kelaa piirin pinta-alan minimoimiseksi, ja lisäksi piirit tulisi toteuttaa mahdollisimman alhaisella tehonkulutuksella. Työssä esiteltyjen piirien kaksi pääkohdetta ovat hyvin erityyppisiä, mitä tulee tehonkulutus-, kaistanleveys- ja toimintataajuusvaatimuksiin. Yhteistä molemmille on lyhyt, alle 10 metrin kantama. Vaikka tässä työssä esitellyt piirit onkin kohdennettu kahteen pääsovelluskohteeseen, voidaan esitettyjä piirejä käyttää myös muiden tiedonsiirtojärjestelmien piirien suunnitteluun. Tässä työssä esitetään mittaustuloksineen yhteensä kolme kokeellista piiriä yllämainittuihin järjestelmiin. Kaksi ensimmäistä kokeellista piiriä muodostaa kokonaisen radiovastaanottimen yhdessä analogisten kantataajuusosien ja analogia-digitaali-muuntimien kanssa. Esitetyt kokeelliset piirit on toteutettu käyttäen 0,13 µm:n viivanleveyden CMOS-tekniikkaa. Näiden lisäksi työ pitää sisällään piirisuunnitteluesimerkkejä, joissa esitetään ideoita ja mahdollisuuksia käyttäen 0,13 µm:n ja 65 nm:n viivanleveyden omaavia CMOS-tekniikoita. Lisäksi piirisuunnitteluesimerkein havainnollistetaan työssä esitetyn teorian paikkansapitävyyttä käyttämällä oikeita komponenttimalleja.reviewe

    Design of CMOS integrated frequency synthesizers for ultra-wideband wireless communications systems

    Get PDF
    Ultra¬wide band (UWB) system is a breakthrough in wireless communication, as it provides data rate one order higher than existing ones. This dissertation focuses on the design of CMOS integrated frequency synthesizer and its building blocks used in UWB system. A mixer¬based frequency synthesizer architecture is proposed to satisfy the agile frequency hopping requirement, which is no more than 9.5 ns, three orders faster than conventional phase¬locked loop (PLL)¬based synthesizers. Harmonic cancela¬tion technique is extended and applied to suppress the undesired harmonic mixing components. Simulation shows that sidebands at 2.4 GHz and 5 GHz are below 36 dBc from carrier. The frequency synthesizer contains a novel quadrature VCO based on the capacitive source degeneration structure. The QVCO tackles the jeopardous ambiguity of the oscillation frequency in conventional QVCOs. Measurement shows that the 5¬GHz CSD¬QVCO in 0.18 µm CMOS technology draws 5.2 mA current from a 1.2 V power supply. Its phase noise is ¬120 dBc at 3 MHz offset. Compared with existing phase shift LC QVCOs, the proposed CSD¬QVCO presents better phase noise and power efficiency. Finally, a novel injection locking frequency divider (ILFD) is presented. Im¬plemented with three stages in 0.18 µm CMOS technology, the ILFD draws 3¬mA current from a 1.8¬V power supply. It achieves multiple large division ratios as 6, 12, and 18 with all locking ranges greater than 1.7 GHz and injection frequency up to 11 GHz. Compared with other published ILFDs, the proposed ILFD achieves the largest division ratio with satisfactory locking range

    High performance RF and baseband building blocks for wireless receivers

    Get PDF
    Because of the unique architecture of wireless receivers, a designer must understand both the high frequency aspects as well as the low-frequency analog considerations for different building blocks of the receiver. The primary goal of this research work is to explore techniques for implementing high performance RF and baseband building blocks for wireless applications. Several novel techniques to improve the performance of analog building blocks are presented. An enhanced technique to couple two LC resonators is presented which does not degrade the loaded quality factor of the resonators which results in an increased dynamic range. A novel technique to automatically tune the quality factor of LC resonators is presented. The proposed scheme is stable and fast and allows programming both the quality factor and amplitude response of the LC filter. To keep the oscillation amplitude of LC VCOs constant and thus achieving a minimum phase noise and a reliable startup, a stable amplitude control loop is presented. The proposed scheme has been also used in a master-slave quality factor tuning of LC filters. An efficient and low-cost architecture for a 3.1GHz-10.6GHz ultra-wide band frequency synthesizer is presented. The proposed scheme is capable of generating 14A novel pseudo-differential transconductance amplifier is presented. The proposed scheme takes advantage of the second-order harmonic available at the output current of pseudo-differential structure to cancel the third-order harmonic distortion. A novel nonlinear function is proposed which inherently removes the third and the fifth order harmonics at its output signal. The proposed nonlinear block is used in a bandpass-based oscillator to generate a highly linear sinusoidal output. Finally, a linearized BiCMOS transconductance amplifier is presented. This transconductance is used to build a third-order linear phase low pass filter with a cut-off frequency of 264MHz for an ultra-wide band receiver. carrier frequencies

    Two-Phase DC-DC Buck Converter for Power Amplifier Modulation

    Get PDF
    This thesis presents the theory, design, layout and a proposal for measurement set up of a synchronous DC-DC buck converter. This converter will be used as the supply modulator of power amplifier of mobile phones. The design is done using 45nm CMOS technology. Pmos and nmos switches are synchronously turns on and off for DC voltage conversion. Second order LC type filter is used to filter out the ac component from output. Two phase interleaving is done to reduce the output ripple voltage. Pulse Width Modulation (PWM) method is used for generating the control signal. Several techniques like dead time control mechanism, reduced gate drive voltage for switches are applied for improving the efficiency of the converter. The operating voltage range of the converter is 3.3-4.2V and it can produce 0.5-3V output voltage with 2W of maximum output power. It has maximum load current of 700mA. The switching frequency of the converter can be varied from 10MHz to 100MHz. The ripple voltage is less than 10mV for 50MHz switching frequency. The converter shows good results in terms of power density and simulated efficiency which are 1.65W/mm2 and 88.5%
    corecore