2,606 research outputs found

    Multiband split-ring resonator based planar inverted-F antenna for 5G applications

    Get PDF
    5G, the fifth generation of wireless communications, is focusing on multiple frequency bands, such as 6GHz, 10GHz, 15GHz, 28GHz, and 38GHz, to achieve high data rates up to 10 Gbps or more.The industry demands multiband antennas to cover these distant frequency bands, which is a task much more challenging. In this paper, we have designed a novel multiband split-ring resonator (SRR) based planar inverted-F antenna (PIFA) for 5G applications. It is composed of a PIFA, an inverted-L parasitic element, a rectangular shaped parasitic element, and a split-ring resonator (SRR) etched on the top plate of the PIFA.The basic PIFA structure resonates at 6GHz. An addition of a rectangular shaped parasitic element produces a resonance at 15GHz. The introduction of a split-ring resonator produces a band notch at 8GHz, and a resonance at 10GHz, while the insertion of an inverted-L shaped parasitic element further enhances the impedance bandwidth in the 10GHz band. The frequency bands covered, each with more than 1GHz impedance bandwidth, are 6GHz (5–7GHz), 10GHz (9–10.8GHz), and 15GHz (14-15GHz), expected for inclusion in next-generation wireless communications, that is, 5G. The design is simulated using Ansys Electromagnetic Suite 17 simulation software package.The simulated and the measured results are compared and analyzed which are generally in good agreement

    Millimetre-wave antennas and systems for the future 5G

    Get PDF
    Editorial of the special issue on Millimetre-Wave Antennas and Systems for the Future 5

    Massive MIMO is a Reality -- What is Next? Five Promising Research Directions for Antenna Arrays

    Full text link
    Massive MIMO (multiple-input multiple-output) is no longer a "wild" or "promising" concept for future cellular networks - in 2018 it became a reality. Base stations (BSs) with 64 fully digital transceiver chains were commercially deployed in several countries, the key ingredients of Massive MIMO have made it into the 5G standard, the signal processing methods required to achieve unprecedented spectral efficiency have been developed, and the limitation due to pilot contamination has been resolved. Even the development of fully digital Massive MIMO arrays for mmWave frequencies - once viewed prohibitively complicated and costly - is well underway. In a few years, Massive MIMO with fully digital transceivers will be a mainstream feature at both sub-6 GHz and mmWave frequencies. In this paper, we explain how the first chapter of the Massive MIMO research saga has come to an end, while the story has just begun. The coming wide-scale deployment of BSs with massive antenna arrays opens the door to a brand new world where spatial processing capabilities are omnipresent. In addition to mobile broadband services, the antennas can be used for other communication applications, such as low-power machine-type or ultra-reliable communications, as well as non-communication applications such as radar, sensing and positioning. We outline five new Massive MIMO related research directions: Extremely large aperture arrays, Holographic Massive MIMO, Six-dimensional positioning, Large-scale MIMO radar, and Intelligent Massive MIMO.Comment: 20 pages, 9 figures, submitted to Digital Signal Processin
    corecore