190 research outputs found

    Building a High Performance Cluster through Computer Reuse

    Get PDF
    The goal of this MQP was to use outdated commodity PCs to build a cluster computer capable of being used for computationally intensive research. Traditionally, PCs are recycled after being taken out of use during a refresh cycle. By using open source software and minimal hardware modifications these PCs can be configured into a cluster that approaches the performance of state-of-the-art cluster computers. In this paper, we present the system setup, configuration, and validation of the WOPPR cluster computer

    Voltage-Margin Advancements among Ultra-low Power Multicore CPU Generations

    Get PDF
    Ο κύριος σκοπός αυτής της μεταπτυχιακής εργασίας είναι ο πλήρης χαρακτηρισμός της συμπεριφοράς της 6ης γενιάς μικροεπεξεργαστή Skylake της Intel, με μια αξιολόγηση 10 δοκιμαστικών προγραμμάτων. Αυτή η αξιολόγηση τελείται μέσω μιας διαδικασίας σταδιακής μείωσης της τάσης του επεξεργαστή, πρώτα διατηρώντας τη μέγιστη συχνότητα στα 2.3 GHz και στη συνέχεια μειώνοντας την συχνότητα στο μισό (1.2 GHz). Η τελευταία περίπτωση μελετήθηκε με σκοπό την αποκάλυψη ακόμα χαμηλότερων ορίων τάσης, στα οποία το σύστημα λειτουργεί με κανονική συμπεριφορά με κόστος την χαμηλότερη απόδοση σε ταχύτητα. Ωστόσο, και στις δύο περιπτώσεις το ελάχιστο ασφαλές περιθώριο τάσης είναι 100 mV κάτω από την ονομαστική. Επιπλέον, αναλύουμε και αναφέρουμε εκτενώς κάθε περίπτωση οποιουδήποτε τύπου σφάλμα και κατάρρευση συστήματος. Στη συνέχεια, παρουσιάζουμε τα αποτελέσματα από τον χαρακτηρισμό της μηχανής Skylake, μαζί με αυτά που βρέθηκαν σε προηγούμενη μελέτη για τον 4ης γενιάς μικροεπεξεργαστή Haswell της Intel και παρουσιάζουμε την πρόοδο των περιθωρίων τάσης, ανάμεσα στις δύο γενιές επεξεργαστών εξαιρετικά χαμηλής ισχύος. Κατά την διαδικασία χαρακτηρισμού, συλλέξαμε επίσης μετρήσεις θερμοκρασίας και ισχύος. Τα αποτελέσματα παρουσιάζονται αναλυτικά μέσω μεταβολών από πυρήνα-σε-πυρήνα, κύκλωμα-σε-κύκλωμα και δοκιμασία-σε-δοκιμασία. Η μελέτη μας, δείχνει ότι κατά τη διάρκεια μείωσης της τάσης δεν σχηματίζονται περιοχές μη ασφαλούς λειτουργίας λόγω μη εμφάνισης διορθωμένων λαθών. Η μέγιστη μείωση τάσης που μπορεί να επιτευχθεί είναι 11.24% με εξαιρετικά κέρδη στην κατανάλωση ισχύος μέχρι και 41% για συγκεκριμένες παραμετροποιήσεις. Ωστόσο, σχετικά με την απόδοση της θερμοκρασίας παρατηρήθηκαν τόσο κέρδη όσο και απώλειες.The main goal of this master thesis is to fully characterize the behavior of Intel’s 6th generation Skylake microprocessor, during off-nominal voltage conditions. This characterization is conducted in stages through a CPU undervolting procedure, firstly by gradually reducing the voltage, while maintaining the maximum available frequency (2.3 GHz), and then by reducing the frequency at half (1.2 GHz). The latter, serves the purpose of exposing even lower voltage margins, in which the system operates in normal behavior while sacrificing speed performance. However, in both cases the minimum safe voltage margin is 100 mV below the nominal voltage. Furthermore, we extensively analyze and report any type of error and system crash occurrence. Afterwards, we present our Skylake characterization results along with those found in a previous study conducted for Intel’s 4th generation Haswell microprocessor and we present the voltage-margin advancements between the two ultra-low power CPU generations. During the characterization, we also collected temperature and power measurements. The results are demonstrated in detail through core-to-core, chip-to-chip and benchmark-to-benchmark variations. Our study shows that during the voltage reduction, unsafe operation regions are not formed due to lack of corrected errors occurrences. The maximum voltage reduction that can be achieved is 11.24% with exceptional power consuming gains of up to 41% for specific configurations. However, regarding temperature efficiency there were observed both gains and losses

    Android Application Development for the Intel Platform

    Get PDF
    Computer scienc

    Methods for Robust and Energy-Efficient Microprocessor Architectures

    Get PDF
    Σήμερα, η εξέλιξη της τεχνολογίας επιτρέπει τη βελτίωση τριών βασικών στοιχείων της σχεδίασης των επεξεργαστών: αυξημένες επιδόσεις, χαμηλότερη κατανάλωση ισχύος και χαμηλότερο κόστος παραγωγής του τσιπ, ενώ οι σχεδιαστές επεξεργαστών έχουν επικεντρωθεί στην παραγωγή επεξεργαστών με περισσότερες λειτουργίες σε χαμηλότερο κόστος. Οι σημερινοί επεξεργαστές είναι πολύ ταχύτεροι και διαθέτουν εξελιγμένες λειτουργικές μονάδες συγκριτικά με τους προκατόχους τους, ωστόσο, καταναλώνουν αρκετά μεγάλη ενέργεια. Τα ποσά ηλεκτρικής ισχύος που καταναλώνονται, και η επακόλουθη έκλυση θερμότητας, αυξάνονται παρά τη μείωση του μεγέθους των τρανζίστορ. Αναπτύσσοντας όλο και πιο εξελιγμένους μηχανισμούς και λειτουργικές μονάδες για την αύξηση της απόδοσης και βελτίωση της ενέργειας, σε συνδυασμό με τη μείωση του μεγέθους των τρανζίστορ, οι επεξεργαστές έχουν γίνει εξαιρετικά πολύπλοκα συστήματα, καθιστώντας τη διαδικασία της επικύρωσής τους σημαντική πρόκληση για τη βιομηχανία ολοκληρωμένων κυκλωμάτων. Συνεπώς, οι κατασκευαστές επεξεργαστών αφιερώνουν επιπλέον χρόνο, προϋπολογισμό και χώρο στο τσιπ για να διασφαλίσουν ότι οι επεξεργαστές θα λειτουργούν σωστά κατά τη διάθεσή τους στη αγορά. Για τους λόγους αυτούς, η εργασία αυτή παρουσιάζει νέες μεθόδους για την επιτάχυνση και τη βελτίωση της φάσης της επικύρωσης, καθώς και για τη βελτίωση της ενεργειακής απόδοσης των σύγχρονων επεξεργαστών. Στο πρώτο μέρος της διατριβής προτείνονται δύο διαφορετικές μέθοδοι για την επικύρωση του επεξεργαστή, οι οποίες συμβάλλουν στην επιτάχυνση αυτής της διαδικασίας και στην αποκάλυψη σπάνιων σφαλμάτων στους μηχανισμούς μετάφρασης διευθύνσεων των σύγχρονων επεξεργαστών. Και οι δύο μέθοδοι καθιστούν ευκολότερη την ανίχνευση και τη διάγνωση σφαλμάτων, και επιταχύνουν την ανίχνευση του σφάλματος κατά τη φάση της επικύρωσης. Στο δεύτερο μέρος της διατριβής παρουσιάζεται μια λεπτομερής μελέτη χαρακτηρισμού των περιθωρίων τάσης σε επίπεδο συστήματος σε δύο σύγχρονους ARMv8 επεξεργαστές. Η μελέτη του χαρακτηρισμού προσδιορίζει τα αυξημένα περιθώρια τάσης που έχουν προκαθοριστεί κατά τη διάρκεια κατασκευής του κάθε μεμονωμένου πυρήνα του επεξεργαστή και αναλύει τυχόν απρόβλεπτες συμπεριφορές που μπορεί να προκύψουν σε συνθήκες μειωμένης τάσης. Για την μελέτη και καταγραφή της συμπεριφοράς του συστήματος υπό συνθήκες μειωμένης τάσης, παρουσιάζεται επίσης σε αυτή τη διατριβή μια απλή και ενοποιημένη συνάρτηση: η συνάρτηση πυκνότητας-σοβαρότητας. Στη συνέχεια, παρουσιάζεται αναλυτικά η ανάπτυξη ειδικά σχεδιασμένων προγραμμάτων (micro-viruses) τα οποία υποβάλουν της θεμελιώδεις δομές του επεξεργαστή σε μεγάλο φορτίο εργασίας. Αυτά τα προγράμματα στοχεύουν στην γρήγορη αναγνώριση των ασφαλών περιθωρίων τάσης. Τέλος, πραγματοποιείται ο χαρακτηρισμός των περιθωρίων τάσης σε εκτελέσεις πολλαπλών πυρήνων, καθώς επίσης και σε διαφορετικές συχνότητες, και προτείνεται ένα πρόγραμμα το οποίο εκμεταλλεύεται όλες τις διαφορετικές πτυχές του προβλήματος της κατανάλωσης ενέργειας και παρέχει μεγάλη εξοικονόμηση ενέργειας διατηρώντας παράλληλα υψηλά επίπεδα απόδοσης. Αυτή η μελέτη έχει ως στόχο τον εντοπισμό και την ανάλυση της σχέσης μεταξύ ενέργειας και απόδοσης σε διαφορετικούς συνδυασμούς τάσης και συχνότητας, καθώς και σε διαφορετικό αριθμό νημάτων/διεργασιών που εκτελούνται στο σύστημα, αλλά και κατανομής των προγραμμάτων στους διαθέσιμους πυρήνες.Technology scaling has enabled improvements in the three major design optimization objectives: increased performance, lower power consumption, and lower die cost, while system design has focused on bringing more functionality into products at lower cost. While today's microprocessors, are much faster and much more versatile than their predecessors, they also consume much power. As operating frequency and integration density increase, the total chip power dissipation increases. This is evident from the fact that due to the demand for increased functionality on a single chip, more and more transistors are being packed on a single die and hence, the switching frequency increases in every technology generation. However, by developing aggressive and sophisticated mechanisms to boost performance and to enhance the energy efficiency in conjunction with the decrease of the size of transistors, microprocessors have become extremely complex systems, making the microprocessor verification and manufacturing testing a major challenge for the semiconductor industry. Manufacturers, therefore, choose to spend extra effort, time, budget and chip area to ensure that the delivered products are operating correctly. To meet high-dependability requirements, manufacturers apply a sequence of verification tasks throughout the entire life-cycle of the microprocessor to ensure the correct functionality of the microprocessor chips from the various types of errors that may occur after the products are released to the market. To this end, this work presents novel methods for ensuring the correctness of the microprocessor during the post-silicon validation phase and for improving the energy efficiency requirements of modern microprocessors. These methods can be applied during the prototyping phase of the microprocessors or after their release to the market. More specifically, in the first part of the thesis, we present and describe two different ISA-independent software-based post-silicon validation methods, which contribute to formalization and modeling as well as the acceleration of the post-silicon validation process and expose difficult-to-find bugs in the address translation mechanisms (ATM) of modern microprocessors. Both methods improve the detection and diagnosis of a hardware design bug in the ATM structures and significantly accelerate the bug detection during the post-silicon validation phase. In the second part of the thesis we present a detailed system-level voltage scaling characterization study for two state-of-the-art ARMv8-based multicore CPUs. We present an extensive characterization study which identifies the pessimistic voltage guardbands (the increased voltage margins set by the manufacturer) of each individual microprocessor core and analyze any abnormal behavior that may occur in off-nominal voltage conditions. Towards the formalization of the any abnormal behavior we also present a simple consolidated function; the Severity function, which aggregates the effects of reduced voltage operation. We then introduce the development of dedicated programs (diagnostic micro-viruses) that aim to accelerate the time-consuming voltage margins characterization studies by stressing the fundamental hardware components. Finally, we present a comprehensive exploration of how two server-grade systems behave in different frequency and core allocation configurations beyond nominal voltage operation in multicore executions. This analysis aims (1) to identify the best performance per watt operation points, (2) to reveal how and why the different core allocation options affect the energy consumption, and (3) to enhance the default Linux scheduler to take task allocation decisions for balanced performance and energy efficiency

    Intel: Tick-Tock product development cadence

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, System Design and Management Program, 2008.Includes bibliographical references (p. 124-142).This thesis investigates on changes in semiconductor industry's product development methodology by following Intel's product development from year 2000. Intel was challenged by customer's preference change, competitors new enhanced product, internet bubble burst economy, and miss steps in the business strategy. Dynamics of these challenges drove Intel to develop a new product strategy: Tick-Tock product cadence. The paper discusses reasons why Intel landed at the Tick-tock strategy and results how strong product portfolio Intel ended up constructing. The thesis further discusses how the new "Global Product Development" strategy evolves, which can take advantage of TickTock cadence and deliver it to the next level helped from the effective GPD and systems engineering deployment.by Cheolmin Park.S.M

    Automated Hardware Prototyping for 3D Network on Chips

    Get PDF
    Vor mehr als 50 Jahren stellte Intel® Mitbegründer Gordon Moore eine Prognose zum Entwicklungsprozess der Transistortechnologie auf. Er prognostizierte, dass sich die Zahl der Transistoren in integrierten Schaltungen alle zwei Jahre verdoppeln wird. Seine Aussage ist immer noch gültig, aber ein Ende von Moores Gesetz ist in Sicht. Mit dem Ende von Moore’s Gesetz müssen neue Aspekte untersucht werden, um weiterhin die Leistung von integrierten Schaltungen zu steigern. Zwei mögliche Ansätze für "More than Moore” sind 3D-Integrationsverfahren und heterogene Systeme. Gleichzeitig entwickelt sich ein Trend hin zu Multi-Core Prozessoren, basierend auf Networks on chips (NoCs). Neben dem Ende des Mooreschen Gesetzes ergeben sich bei immer kleiner werdenden Technologiegrößen, vor allem jenseits der 60 nm, neue Herausforderungen. Eine Schwierigkeit ist die Wärmeableitung in großskalierten integrierten Schaltkreisen und die daraus resultierende Überhitzung des Chips. Um diesem Problem in modernen Multi-Core Architekturen zu begegnen, muss auch die Verlustleistung der Netzwerkressourcen stark reduziert werden. Diese Arbeit umfasst eine durch Hardware gesteuerte Kombination aus Frequenzskalierung und Power Gating für 3D On-Chip Netzwerke, einschließlich eines FPGA Prototypen. Dafür wurde ein Takt-synchrones 2D Netzwerk auf ein dreidimensionales asynchrones Netzwerk mit mehreren Frequenzbereichen erweitert. Zusätzlich wurde ein skalierbares Online-Power-Management System mit geringem Ressourcenaufwand entwickelt. Die Verifikation neuer Hardwarekomponenten ist einer der zeitaufwendigsten Schritte im Entwicklungsprozess hochintegrierter digitaler Schaltkreise. Um diese Aufgabe zu beschleunigen und um eine parallele Softwareentwicklung zu ermöglichen, wurde im Rahmen dieser Arbeit ein automatisiertes und benutzerfreundliches Tool für den Entwurf neuer Hardware Projekte entwickelt. Eine grafische Benutzeroberfläche zum Erstellen des gesamten Designablaufs, vom Erstellen der Architektur, Parameter Deklaration, Simulation, Synthese und Test ist Teil dieses Werkzeugs. Zudem stellt die Größe der Architektur für die Erstellung eines Prototypen eine besondere Herausforderung dar. Frühere Arbeiten haben es versäumt, eine schnelles und unkompliziertes Prototyping, insbesondere von Architekturen mit mehr als 50 Prozessorkernen, zu realisieren. Diese Arbeit umfasst eine Design Space Exploration und FPGA-basierte Prototypen von verschiedenen 3D-NoC Implementierungen mit mehr als 80 Prozessoren

    Evoluzione e stato dell'arte dei microprocessori INTEL

    Get PDF
    uesta tesi di laurea si pone l’obiettivo di descrivere l’evoluzione delle architetture dei processori Intel esaminando la Roadmap passata, presente e futura, considerando le tecnologie del processo di costruzione ed esaminando nello specifico le architetture recenti di 45nm, quella attuale a 32nm e l’ormai prossima a 22nm.ope

    A survey on run-time power monitors at the edge

    Get PDF
    Effectively managing energy and power consumption is crucial to the success of the design of any computing system, helping mitigate the efficiency obstacles given by the downsizing of the systems while also being a valuable step towards achieving green and sustainable computing. The quality of energy and power management is strongly affected by the prompt availability of reliable and accurate information regarding the power consumption for the different parts composing the target monitored system. At the same time, effective energy and power management are even more critical within the field of devices at the edge, which exponentially proliferated within the past decade with the digital revolution brought by the Internet of things. This manuscript aims to provide a comprehensive conceptual framework to classify the different approaches to implementing run-time power monitors for edge devices that appeared in literature, leading the reader toward the solutions that best fit their application needs and the requirements and constraints of their target computing platforms. Run-time power monitors at the edge are analyzed according to both the power modeling and monitoring implementation aspects, identifying specific quality metrics for both in order to create a consistent and detailed taxonomy that encompasses the vast existing literature and provides a sound reference to the interested reader
    corecore