183 research outputs found

    A Novel Cyclic Time to Digital Converter Based on Triple-Slope Interpolation and Time Amplification

    Get PDF
    This paper investigates a novel cyclic time-to-digital converter (TDC) which employs triple-slope analog interpolation and time amplification techniques for digitizing the time interval between the rising edges of two input signals(Start and Stop). The proposed converter will be a 9-bit cyclic time-to-digital converter that does not use delay lines in its structure. Therefore, it has a low sensitivity to temperature, power supply and process (PVT) variations. The other advantages of the proposed converter are low circuit complexity, and high accuracy compared with the time-to-digital converters that have previously been proposed. Also, this converter improves the time resolution and the dynamic range. In the same resolution, linear range and dynamic range, the proposed cyclic TDC reduces the number of circuit elements compared with the converters that have a similar circuit structure. Thus, the converter reduces the chip area, the power consumption and the figure of merit (FoM). In this converter, the integral nonlinearity (INL) and differential nonlinearity (DNL) errors are reduced. In order to evaluate the idea, the proposed time-to-digital converter is designed in TSMC 45 nm CMOS technology and simulated. Comparison of the theoretical and simulation results confirms the benefits of the proposed TDC

    A 3-step Low-latency Low-Power Multichannel Time-to-Digital Converter based on Time Residual Amplifier

    Full text link
    This paper proposes and evaluates a novel architecture for a low-power Time-to-Digital Converter with high resolution, optimized for both integration in multichannel chips and high rate operation (40 Mconversion/s/channel). This converter is based on a three-step architecture. The first step uses a counter whereas the following ones are based on two kinds of Delay Line structures. A programmable time amplifier is used between the second and third steps to reach the final resolution of 24.4 ps in the standard mode of operation. The system makes use of common continuously stabilized master blocks that control trimmable slave blocks, in each channel, against the effects of global PVT variations. Thanks to this structure, the power consumption of a channel is considerably reduced when it does not process a hit, and limited to 2.2 mW when it processes a hit. In the 130 nm CMOS technology used for the prototype, the area of a TDC channel is only 0.051 mm2. This compactness combined with low power consumption is a key advantage for integration in multi-channel front-end chips. The performance of this new structure has been evaluated on prototype chips. Measurements show excellent timing performance over a wide range of operating temperatures (-40{\deg}C to 60{\deg}C) in agreement with our expectations. For example, the measured timing integral nonlinearity is better than 1 LSB (25 ps) and the overall timing precision is better than 21 ps RMS

    Aika-digitaalimuunnin laajakaistaisiin aikapohjaisiin analogia-digitaalimuuntimiin

    Get PDF
    Modern deeply scaled semiconductor processes make the design of voltage-domain circuits increasingly challenging. On the contrary, the area and power consumption of digital circuits are improving with every new process node. Consequently, digital solutions are designed in place of their purely analog counterparts in applications such as analog-to-digital (A/D) conversion. Time-based analog-to-digital converters (ADC) employ digital-intensive architectures by processing analog quantities in time-domain. The quantization step of the time-based A/D-conversion is carried out by a time-to-digital converter (TDC). A free-running ring oscillator -based TDC design is presented for use in wideband time-based ADCs. The proposed architecture aims to maximize time resolution and full-scale range, and to achieve error resilient conversion performance with minimized power and area consumptions. The time resolution is maximized by employing a high-frequency multipath ring oscillator, and the full-scale range is extended using a high-speed gray counter. The error resilience is achieved by custom sense-amplifier -based sampling flip-flops, gray coded counter and a digital error correction algorithm for counter sampling error correction. The implemented design achieves up to 9-bit effective resolution at 250 MS/s with 4.3 milliwatt power consumption.Modernien puolijohdeteknologioiden skaalautumisen seurauksena jännitetason piirien suunnittelu tulee entistä haasteellisemmaksi. Toisaalta digitaalisten piirirakenteiden pinta-ala sekä tehonkulutus pienenevät prosessikehityksen myötä. Tästä syystä digitaalisia ratkaisuja suunnitellaan vastaavien puhtaasti analogisien rakenteiden tilalle. Analogia-digitaalimuunnos (A/D-muunnos) voidaan toteuttaa jännitetason sijaan aikatasossa käyttämällä aikapohjaisia A/D-muuntimia, jotka ovat rakenteeltaan pääosin digitaalisia. Kvantisointivaihe aikapohjaisessa A/D-muuntimessa toteutetaan aika-digitaalimuuntimella. Työ esittelee vapaasti oskilloivaan silmukkaoskillaattoriin perustuvan aika-digitaalimuuntimen, joka on suunniteltu käytettäväksi laajakaistaisessa aikapohjaisessa A/D-muuntimessa. Esitelty rakenne pyrkii maksimoimaan muuntimen aikaresoluution sekä muunnosalueen, sekä saavuttamaan virhesietoisen muunnostoiminnan minimoidulla tehon sekä pinta-alan kulutuksella. Aikaresoluutio on maksimoitu hyödyntämällä suuritaajuista monipolkuista silmukkaoskillaattoria, ja muunnosalue on maksimoitu nopealla Gray-koodi -laskuripiirillä. Muunnosprosessin virhesietoisuus on saavutettu toteuttamalla näytteistys herkillä kiikkuelementeillä, hyödyntämällä Gray-koodattua laskuria, sekä jälkiprosessoimalla laskurin näytteistetyt arvot virheenkorjausalgoritmilla. Esitelty muunnintoteutus saavuttaa 9 bitin efektiivisen resoluution 250 MS/s näytetaajuudella ja 4.3 milliwatin tehonkulutuksella

    Arrayable Voltage-Controlled Ring-Oscillator for Direct Time-of-Flight Image Sensors

    Get PDF
    Direct time-of-flight (d-ToF) estimation with high frame rate requires the incorporation of a time-to-digital converter (TDC) at pixel level. A feasible approach to a compact implementation of the TDC is to use the multiple phases of a voltage-controlled ring-oscillator (VCRO) for the finest bits. The VCRO becomes central in determining the performance parameters of a d-ToF image sensor. In this paper, we are covering the modeling, design, and measurement of a CMOS pseudo-differential VCRO. The oscillation frequency, the jitter due to mismatches and noise and the power consumption are analytically evaluated. This design has been incorporated into a 64x64-pixel array. It has been fabricated in a 0.18 mu m standard CMOS technology. Occupation area is 28x29 mu m(2) and power consumption is 1.17 mW at 850 MHz. The measured gain of the VCRO is of 477 MHz/V with a frequency tuning range of 53%. Moreover, it features a linearity of 99.4% over a wide range of control frequencies, namely, from 400 to 850 MHz. The phase noise is of -102 dBc/Hz at 2 MHz offset frequency from 850 MHz. The influence of these parameters in the performance of the TDC has been measured. The minimum time bin of the TDC is 147 ps with a rms DNL/INL of 0.13/1.7LSB.Office of Naval Research (USA) N000141410355Ministerio de Economía y Competitividad TEC2015-66878-C3-1-RJunta de Andalucía P12-TIC 233

    An On-chip PVT Resilient Short Time Measurement Technique

    Get PDF
    As the CMOS technology nodes continue to shrink, the challenges of developing manufacturing tests for integrated circuits become more difficult to address. To detect parametric faults of new generation of integrated circuits such as 3D ICs, on-chip short-time intervals have to be accurately measured. The accuracy of an on-chip time measurement module is heavily affected by Process, supply Voltage, and Temperature (PVT) variations. This work presents a new on-chip time measurement scheme where the undesired effects of PVT variations are attenuated significantly. To overcome the effects of PVT variations on short-time measurement, phase locking methodology is utilized to implement a robust Vernier delay line. A prototype Time-to-Digital Converter (TDC) has been fabricated using TSMC 0.180 µm CMOS technology and experimental measurements have been carried out to verify the performance parameters of the TDC. The measurement results indicate that the proposed solution reduces the effects of PVT variations by more than tenfold compared to a conventional on-chip TDC. A coarse-fine time interval measurement scheme which is resilient to the PVT variations is also proposed. In this approach, two Delay Locked Loops (DLLs) are utilized to minimize the effects of PVT on the measured time intervals. The proposed scheme has been implemented using CMOS 65nm technology. Simulation results using Advanced Design System (ADS) indicate that the measurement resolution varies by less than 0.1ps with ±15% variations of the supply voltage. The proposed method also presents a robust performance against process and temperature variations. The measurement accuracy changes by a maximum of 0.05ps from slow to fast corners. The implemented TDC presents a robust performance against temperature variations too and its measurement accuracy varies a few femto-seconds from -40 ºC to +100 ºC. The principle of robust short-time measurement was used in practice to design and implement a state-of-the-art Coordinate Measuring Machine (CMM) for an industry partner to measure geometrical features of transmission parts with micrometer resolution. The solution developed for the industry partner has resulted in a patent and a product in the market. The on-chip short-time measurement technology has also been utilized to develop a solution to detect Hardware Trojans

    Design and test of readout electronics for medical and astrophysics applications

    Get PDF
    The applied particle physics has a strong R&D tradition aimed at rising the instrumentation performances to achieve relevant results for the scientific community. The know-how achieved in developing particle detectors can be applied to apparently divergent fields like hadrontherapy and cosmic ray detection. A proof of this fact is presented in this doctoral thesis, where the results coming from three different projects are discussed in likewise macro-chapters. A brief introduction (Chapter 1) reports the basic features characterizing a typical particle detector system. This section is developed following the data transmission path: from the sensor, the data moves through the front-end electronics for being readout and collected, ready for the data manipulation. After this general section, the thesis describes the results achieved in two projects developed by the collaboration between the medical physics group of the University of Turin and the Turin section of the Italian Nuclear Institute for Nuclear Physics. Chapter 2 focuses on the TERA09 project. TERA09 is a 64 channels customized chip that has been realized to equip the front-end readout electronics for the new generation of beam monitor chambers for particle therapy applications. In this field, the trend in the accelerators development is moving toward compact solutions providing high-intensity pulsed-beams. However, such a high intensity will saturate the present readout electronics. In order to overcome this critical issue, the TERA09 chip is able to cope with the expected maximum intensity while keeping high resolution by working on a wide conversion-linearity zone which extends from hundreds of pA to hundreds of μA. The chip gain spread is in the order of 1-3% (r.m.s.), with a 200 fC charge resolution. The thesis author took part in the chip design and fully characterized the device. The same group is currently working on behalf of the MoVeIT collaboration for the development of a new silicon strip detector prototype for particle therapy applications. Chapter 3 presents the technical aspects of this project, focusing on the author’s contribution: the front-end electronics design. The sensor adopted for the MoVeIT project is based on 50 μm thin sensors with internal gain, aiming to detect the single beam particle thus counting their number up to 109 cm2/s fluxes, with a pileup probability < 1%. A similar approach would lead to a drastic step forward if compared to the classical and widely used monitoring system based on gas ionization chambers. For what concerns the front-end electronics, the group strategy has been to design two prototypes of custom front-end: one based on a transimpedance preamplifier with a resistive feedback and the other one based on a charge sensitive amplifier. The challenging tasks for the electronics are represented by the charge and dynamic range which are respectively the 3 - 150 fC and the hundreds of MHz instantaneous rate (100 MHz as the milestone, up to 250 MHz ideally). Chapter 4 is a report on the trigger logic development for the Mini-EUSO detector. Mini-EUSO is a telescope designed by the JEM-EUSO Collaboration to map the Earth in the UV range from the vantage point of the International Space Station (ISS), in low Earth orbit. This approach will lay the groundwork for the detection of Extreme Energy Cosmic Rays (EECRs) from space. Due to its 2.5 μs time resolution, Mini-EUSO is capable of detecting a wide range of UV phenomena in the Earth’s atmosphere. In order to maximize the scientific return of the mission, it is necessary to implement a multi-level trigger logic for data selection over different timescales. This logic is key to the success of the mission and thus must be thoroughly tested and carefully integrated into the data processing system prior to the launch. The author took part in the trigger integration in hardware, laboratory trigger tests and also developed the firmware of the trigger ancillary blocks. Chapter 5 closes this doctoral thesis, with a dedicated summary part for each of the three macro-chapters

    The Efficient Design of Time-to-Digital Converters

    Get PDF
    corecore