145 research outputs found

    Low-Noise Energy-Efficient Sensor Interface Circuits

    Full text link
    Today, the Internet of Things (IoT) refers to a concept of connecting any devices on network where environmental data around us is collected by sensors and shared across platforms. The IoT devices often have small form factors and limited battery capacity; they call for low-power, low-noise sensor interface circuits to achieve high resolution and long battery life. This dissertation focuses on CMOS sensor interface circuit techniques for a MEMS capacitive pressure sensor, thermopile array, and capacitive microphone. Ambient pressure is measured in the form of capacitance. This work propose two capacitance-to-digital converters (CDC): a dual-slope CDC employs an energy efficient charge subtraction and dual comparator scheme; an incremental zoom-in CDC largely reduces oversampling ratio by using 9b zoom-in SAR, significantly improving conversion energy. An infrared gesture recognition system-on-chip is then proposed. A hand emits infrared radiation, and it forms an image on a thermopile array. The signal is amplified by a low-noise instrumentation chopper amplifier, filtered by a low-power 30Hz LPF to remove out-band noise including the chopper frequency and its harmonics, and digitized by an ADC. Finally, a motion history image based DSP analyzes the waveform to detect specific hand gestures. Lastly, a microphone preamplifier represents one key challenge in enabling voice interfaces, which are expected to play a dominant role in future IoT devices. A newly proposed switched-bias preamplifier uses switched-MOSFET to reduce 1/f noise inherently.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/137061/1/chaseoh_1.pd

    A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 μm SOI CMOS

    Get PDF
    In vivo recording of neural action-potential and local-field-potential signals requires the use of high-resolution penetrating probes. Several international initiatives to better understand the brain are driving technology efforts towards maximizing the number of recording sites while minimizing the neural probe dimensions. We designed and fabricated (0.13-μm SOI Al CMOS) a 384-channel configurable neural probe for large-scale in vivo recording of neural signals. Up to 966 selectable active electrodes were integrated along an implantable shank (70 μm wide, 10 mm long, 20 μm thick), achieving a crosstalk of −64.4 dB. The probe base (5 × 9 mm2) implements dual-band recording and a 1

    Integrated Circuits and Systems for Smart Sensory Applications

    Get PDF
    Connected intelligent sensing reshapes our society by empowering people with increasing new ways of mutual interactions. As integration technologies keep their scaling roadmap, the horizon of sensory applications is rapidly widening, thanks to myriad light-weight low-power or, in same cases even self-powered, smart devices with high-connectivity capabilities. CMOS integrated circuits technology is the best candidate to supply the required smartness and to pioneer these emerging sensory systems. As a result, new challenges are arising around the design of these integrated circuits and systems for sensory applications in terms of low-power edge computing, power management strategies, low-range wireless communications, integration with sensing devices. In this Special Issue recent advances in application-specific integrated circuits (ASIC) and systems for smart sensory applications in the following five emerging topics: (I) dedicated short-range communications transceivers; (II) digital smart sensors, (III) implantable neural interfaces, (IV) Power Management Strategies in wireless sensor nodes and (V) neuromorphic hardware

    Continuous-time acquisition of biosignals using a charge-based ADC topology

    Get PDF
    This paper investigates continuous-time (CT) signal acquisition as an activity-dependent and nonuniform sampling alternative to conventional fixed-rate digitisation. We demonstrate the applicability to biosignal representation by quantifying the achievable bandwidth saving by nonuniform quantisation to commonly recorded biological signal fragments allowing a compression ratio of ≈5 and 26 when applied to electrocardiogram and extracellular action potential signals, respectively. We describe several desirable properties of CT sampling, including bandwidth reduction, elimination/reduction of quantisation error, and describe its impact on aliasing. This is followed by demonstration of a resource-efficient hardware implementation. We propose a novel circuit topology for a charge-based CT analogue-to-digital converter that has been optimized for the acquisition of neural signals. This has been implemented in a commercially available 0.35 μm CMOS technology occupying a compact footprint of 0.12 mm 2 . Silicon verified measurements demonstrate an 8-bit resolution and a 4 kHz bandwidth with static power consumption of 3.75 μW from a 1.5 V supply. The dynamic power dissipation is completely activity-dependent, requiring 1.39 pJ energy per conversion

    A Low-Power Capacitive Transimpedance D/A Converter

    Get PDF
    This thesis proposes a new low-power and low-area DAC for single-slope ADCs used in CMOS image sensors. With increase in resolution requirements for ADCs, conventional DAC architectures suffered the limitation of either large area or high power consumption with higher resolution scaling. Thus, the proposed capacitive transimpedance amplifier DAC (CTIA DAC) could solve this by offering the resolution requirement required without taking a hit on the area or power budget. The thesis has been structured in the following manner: The first chapter introduces image sensors in general and talks about progression through different image sensors and pixel architectures that have been used through the years. It also explains the operation of a CMOS image sensor from a paper published from Sony on high-speed image sensors. The second chapter presents the importance and role of DACs in CMOS image sensors and briefly explains a few commonly used DAC architectures in image sensors. It explains the advantages and disadvantages of present architectures and leads the discussion towards the development of the proposed DAC. The third chapter gives an overview of the CTIA DAC and explains the working of the different circuit blocks that are used to implement the proposed DAC. Chapter Four explains the design approach for the blocks explained in Chapter Three. It presents the critical design choices that were made for overall performance of the DAC. Results of individual blocks and the DAC as a whole are presented and compared against other recently published DAC papers. The final chapter summarizes some key results of the design and talks about the scope for future work and improvement

    Microelectromechanical Systems for Wireless Radio Front-ends and Integrated Frequency References.

    Full text link
    Microelectromechanical systems (MEMS) have great potential in realizing chip-scale integrated devices for energy-efficient analog spectrum processing. This thesis presents the development of a new class of MEMS resonators and filters integrated with CMOS readout circuits for RF front-ends and integrated timing applications. Circuit-level innovations coupled with new device designs allowed for realizing integrated systems with improved performance compared to standalone devices reported in the literature. The thesis is comprised of two major parts. The first part of the thesis is focused on developing integrated MEMS timing devices. Fused silica is explored as a new structural material for fabricating high-Q vibrating micromechanical resonators. A piezoelectric-on-silica MEMS resonator is demonstrated with a high Q of more than 20,000 and good electromechanical coupling. A low phase noise CMOS reference oscillator is implemented using the MEMS resonator as a mechanical frequency reference. Temperature-stable operation of the MEMS oscillator is realized by ovenizing the platform using an integrated heater. In an alternative scheme, the intrinsic temperature sensitivity of MEMS resonators is utilized for temperature sensing, and active compensation for MEMS oscillators is realized by oven-control using a phase-locked loop (PLL). CMOS circuits are implemented for realizing the PLL-based low-power oven-control system. The active compensation technique realizes a MEMS oscillator with an overall frequency drift within +/- 4 ppm across -40 to 70 °C, without the need for calibration. The CMOS PLL circuits for oven-control is demonstrated with near-zero phase noise invasion on the MEMS oscillators. The properties of PLL-based compensation for realizing ultra-stable MEMS frequency references are studied. In the second part of the thesis, RF MEMS devices, including tunable capacitors, high-Q inductors, and ohmic switches, are fabricated using a surface micromachined integrated passive device (IPD) process. Using this process, an integrated ultra-wideband (UWB) filter has been demonstrated, showing low loss and a small form factor. To further address the issue of narrow in-band interferences in UWB communication, a tunable MEMS bandstop filter is integrated with the bandpass filter with more than an octave frequency tuning range. The bandstop filter can be optionally switched off by employing MEMS ohmic switches co-integrated on the same chip.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/109069/1/zzwu_1.pd

    Investigation of Millimetre Wave Generation by stimulated Brillouin scattering for Radio Over Fibre Applications

    Get PDF
    The rising demand for greater bandwidth and increased flexibility in modern telecommunication systems has lead to increased research activities in the field of Millimetre Wave-Photonics. The combination of an optical access network and the radio propagation of high data-rate signals provides a solution to meet these demands. Such structures are also known as Radio Over Fibre Systems. They implement the optical Millimetre Wave generation in a central station and the transmission of radio waves via a remote antenna unit to the radio cell. The expected data rate is very high, due to the fact that both the optical and the radio-link provide a large transmission bandwidth. This dissertation concerns the investigation of a new and simple method for the flexible generation of Millimetre Waves for application in Radio Over Fibre systems. The method is based on the heterodyne detection of two optical waves in a photo detector. By externally amplitude modulating the optical wave, different sidebands are generated. Two of these sidebands are selected and amplified by the non-linear effect of stimulated Brillouin scattering. As a gain medium, a standard single mode fibre is used. According to the theoretical investigation, very good carrier performances are possible with this method, and a computer simulation shows little degradation in the signals during their propagation in the system. The measured results are in strong agreement with the theoretical analysis. Experimental results show that the system can be fully utilised as a Radio Over Fibre system. The thesis is divided into five main parts: Introduction – Theory – Simulation – Experiment – Conclusion. In the Introduction, an overview of the current methods of Millimetre Wave Generation, Radio Over Fibre and the nonlinear effects of Brillouin scattering is given. In the theoretical section, a differential equation system which mathematically describes the system is derived and also solved numerically. With a proof of the concept set-up, the simulated results are compared with the experimental data. In the last section the work is conclude and future tasks are discus

    Energy autonomous systems : future trends in devices, technology, and systems

    Get PDF
    The rapid evolution of electronic devices since the beginning of the nanoelectronics era has brought about exceptional computational power in an ever shrinking system footprint. This has enabled among others the wealth of nomadic battery powered wireless systems (smart phones, mp3 players, GPS, …) that society currently enjoys. Emerging integration technologies enabling even smaller volumes and the associated increased functional density may bring about a new revolution in systems targeting wearable healthcare, wellness, lifestyle and industrial monitoring applications
    corecore