727 research outputs found

    A low-power native NMOS-based bandgap reference operating from −55°C to 125°C with Li-Ion battery compatibility

    Get PDF
    Summary The paper describes the implementation of a bandgap reference based on native-MOSFET transistors for low-power sensor node applications. The circuit can operate from −55°C to 125°C and with a supply voltage ranging from 1.5 to 4.2 V. Therefore, it is compatible with the temperature range of automotive and military-aerospace applications, and for direct Li-Ion battery attach. Moreover, the circuit can operate without any dedicated start-up circuit, thanks to its inherent single operating point. A mathematical model of the reference circuit is presented, allowing simple portability across technology nodes, with current consumption and silicon area as design parameters. Implemented in a 55-nm CMOS technology, the voltage reference achieves a measured average (maximum) temperature coefficient of 28 ppm/°C (43 ppm/°C) and a measured sample-to-sample variation within 57 mV, with a current consumption of 420 nA at 27°C

    An Ultra-Low-Power Oscillator with Temperature and Process Compensation for UHF RFID Transponder

    Get PDF
    This paper presents a 1.28MHz ultra-low-power oscillator with temperature and process compensation. It is very suitable for clock generation circuits used in ultra-high-frequency (UHF) radio-frequency identification (RFID) transponders. Detailed analysis of the oscillator design, including process and temperature compensation techniques are discussed. The circuit is designed using TSMC 0.18μm standard CMOS process and simulated with Spectre. Simulation results show that, without post-fabrication calibration or off-chip components, less than ±3% frequency variation is obtained from –40 to 85°C in three different process corners. Monte Carlo simulations have also been performed, and demonstrate a 3σ deviation of about 6%. The power for the proposed circuitry is only 1.18µW at 27°C

    Design of a Programmable Passive SoC for Biomedical Applications Using RFID ISO 15693/NFC5 Interface

    Get PDF
    Low power, low cost inductively powered passive biotelemetry system involving fully customized RFID/NFC interface base SoC has gained popularity in the last decades. However, most of the SoCs developed are application specific and lacks either on-chip computational or sensor readout capability. In this paper, we present design details of a programmable passive SoC in compliance with ISO 15693/NFC5 standard for biomedical applications. The integrated system consists of a 32-bit microcontroller, a sensor readout circuit, a 12-bit SAR type ADC, 16 kB RAM, 16 kB ROM and other digital peripherals. The design is implemented in a 0.18 μ m CMOS technology and used a die area of 1.52 mm × 3.24 mm. The simulated maximum power consumption of the analog block is 592 μ W. The number of external components required by the SoC is limited to an external memory device, sensors, antenna and some passive components. The external memory device contains the application specific firmware. Based on the application, the firmware can be modified accordingly. The SoC design is suitable for medical implants to measure physiological parameters like temperature, pressure or ECG. As an application example, the authors have proposed a bioimplant to measure arterial blood pressure for patients suffering from Peripheral Artery Disease (PAD)

    An Ultra Low-Power Programmable Voltage Reference for Power-Constrained Electronic Systems

    Get PDF
    This paper proposes a novel architecture for the generation of a programmable voltage reference: the background- calibrated (BC)-PVR. Our mixed-signal architecture periodically calibrates a static ultra low-power voltage reference generator, from an accurate bandgap reference. The portion of the chip used for the calibration can be powered down with a programmable duty-cycle. The system aims to fully exploit the small temperature derivative vs time DT of several application domains to minimize the average current consumption. The BC-PVR has been designed and implemented in TSMC 55-nm CMOS technology, and it achieves the largest reported programming reference output ◦range [0.42 - 2.52] V, over the temperature range [-20 , 85] C. The duty-cycle mode allows nanoampere current consumption, and the large design flexibility permits to optimize the system performance for the specific application. These features make the BC-PVR very well-suited for power-constrained electronic systems

    Integrated Circuits for Programming Flash Memories in Portable Applications

    Get PDF
    Smart devices such as smart grids, smart home devices, etc. are infrastructure systems that connect the world around us more than before. These devices can communicate with each other and help us manage our environment. This concept is called the Internet of Things (IoT). Not many smart nodes exist that are both low-power and programmable. Floating-gate (FG) transistors could be used to create adaptive sensor nodes by providing programmable bias currents. FG transistors are mostly used in digital applications like Flash memories. However, FG transistors can be used in analog applications, too. Unfortunately, due to the expensive infrastructure required for programming these transistors, they have not been economical to be used in portable applications. In this work, we present low-power approaches to programming FG transistors which make them a good candidate to be employed in future wireless sensor nodes and portable systems. First, we focus on the design of low-power circuits which can be used in programming the FG transistors such as high-voltage charge pumps, low-drop-out regulators, and voltage reference cells. Then, to achieve the goal of reducing the power consumption in programmable sensor nodes and reducing the programming infrastructure, we present a method to program FG transistors using negative voltages. We also present charge-pump structures to generate the necessary negative voltages for programming in this new configuration

    Ultra-low power mixed-signal frontend for wearable EEGs

    Get PDF
    Electronics circuits are ubiquitous in daily life, aided by advancements in the chip design industry, leading to miniaturised solutions for typical day to day problems. One of the critical healthcare areas helped by this advancement in technology is electroencephalography (EEG). EEG is a non-invasive method of tracking a person's brain waves, and a crucial tool in several healthcare contexts, including epilepsy and sleep disorders. Current ambulatory EEG systems still suffer from limitations that affect their usability. Furthermore, many patients admitted to emergency departments (ED) for a neurological disorder like altered mental status or seizures, would remain undiagnosed hours to days after admission, which leads to an elevated rate of death compared to other conditions. Conducting a thorough EEG monitoring in early-stage could prevent further damage to the brain and avoid high mortality. But lack of portability and ease of access results in a long wait time for the prescribed patients. All real signals are analogue in nature, including brainwaves sensed by EEG systems. For converting the EEG signal into digital for further processing, a truly wearable EEG has to have an analogue mixed-signal front-end (AFE). This research aims to define the specifications for building a custom AFE for the EEG recording and use that to review the suitability of the architectures available in the literature. Another critical task is to provide new architectures that can meet the developed specifications for EEG monitoring and can be used in epilepsy diagnosis, sleep monitoring, drowsiness detection and depression study. The thesis starts with a preview on EEG technology and available methods of brainwaves recording. It further expands to design requirements for the AFE, with a discussion about critical issues that need resolving. Three new continuous-time capacitive feedback chopped amplifier designs are proposed. A novel calibration loop for setting the accurate value for a pseudo-resistor, which is a crucial block in the proposed topology, is also discussed. This pseudoresistor calibration loop achieved the resistor variation of under 8.25%. The thesis also presents a new design of a curvature corrected bandgap, as well as a novel DDA based fourth-order Sallen-Key filter. A modified sensor frontend architecture is then proposed, along with a detailed analysis of its implementation. Measurement results of the AFE are finally presented. The AFE consumed a total power of 3.2A (including ADC, amplifier, filter, and current generation circuitry) with the overall integrated input-referred noise of 0.87V-rms in the frequency band of 0.5-50Hz. Measurement results confirmed that only the proposed AFE achieved all defined specifications for the wearable EEG system with the smallest power consumption than state-of-art architectures that meet few but not all specifications. The AFE also achieved a CMRR of 131.62dB, which is higher than any studied architectures.Open Acces

    Subthreshold design of ultra low-power analog modules

    Get PDF
    Il consumo di potenza rappresenta l’indicatore chiave delle performance di recenti applicazioni portatili, come dispositivi medici impiantabili o tag RFID passivi, allo scopo di aumentare, rispettivamente, i tempi di funzionamento o i range operativi. La riduzione della tensione di alimentazione si è dimostrata l’approccio migliore per ridurre il consumo di potenza dei sistemi digitali integrati. Al fine di tenere il passo con la riduzione delle tensioni di alimentazione, anche le sezioni analogiche dei sistemi mixed signal devono essere in grado di funzionare con livelli di tensione molto bassi. Di conseguenza, sono richieste nuove metodologie di progettazione analogica e configurazioni circuitali innovative in grado di lavorare con tensioni di alimentazioni bassissime, dissipando una potenza estremamente bassa. Il regime di funzionamento sottosoglia consente di ridurre notevolmente le tensioni applicabili ai dispositivi ed si contraddistingue per i livelli di corrente molto bassi, rispetto al ben noto funzionamento in forte inversione. Queste due caratteristiche sono state sfruttate nella realizzazione di moduli analogici di base ultra low voltage, low power. Tre nuove architetture di riferimenti di tensione, che lavorano con tutti i transistor polarizzati in regime sottosoglia, sono stati fabbricati in tecnologia CMOS 0.18 μm. I tre circuiti si basano sullo stesso principio di funzionamento per compensare gli effetti della variazione della temperatura sulla tensione di riferimento generata. Tramite il principio di funzionamento proposto, la tensione di riferimento può essere approssimata con la differenza delle tensioni di soglia, a temperatura ambiente, dei transistor. Misure sperimentali sono state effettuate su set con più di 30 campioni per ogni configurazione circuitale. Una dettagliata analisi statistica ha dimostrato un consumo medio di potenza che va da pochi nano watt a poche decine di nano watt, mentre la minima tensione di alimentazione, raggiunta da una delle tre configurazioni, è di soli 0.45 V. Le tensioni di riferimento generate sono molto precise rispetto alle variazioni della temperatura e della tensione di alimentazione, infatti sono stati ottenuti coefficienti di temperatura e line sensitivity medi a partire rispettivamente da 165 ppm/°C e 0.065 %/V. Inoltre, è stata trattata anche la progettazione di amplificatori ultra low voltage, low power. Sono state illustrate linee guida dettagliate per la progettazione di amplificatori sottosoglia e le stesse sono state applicate per la realizzazione di un amplificatore a due stadi, con compensazione di Miller, funzionante con una tensione di alimentazione di 0.5 V. I risultati sperimentali dell’op amp proposto, fabbricato in tecnologia CMOS 0.18 μm, hanno mostrato un guadagno DC ad anello aperto di 70 dB, un prodotto banda guadagno di 18 kHz ed un consumo di potenza di soli 75 nW. I risultati delle misure sperimentali dimostrano che gli amplificatori operazionali in sottosoglia rappresentano una soluzione molto interessante nella realizzazione di applicazioni efficienti in termini energetici per gli attuali sistemi elettronici portatili. Dal confronto con amplificatori ultra low power, low voltage presenti in letteratura, si evince che la soluzione proposta offre un miglior compromesso tra velocità, potenza dissipata e capacità di carico
    corecore