69 research outputs found

    Design of a D-Band CMOS Amplifier Utilizing Coupled Slow-Wave Coplanar Waveguides

    Get PDF

    Design and characterization of monolithic millimeter-wave active and passive components, low-noise and power amplifiers, resistive mixers, and radio front-ends

    Get PDF
    This thesis focuses on the design and characterization of monolithic active and passive components, low-noise and power amplifiers, resistive mixers, and radio front-ends for millimeter-wave applications. The thesis consists of 11 publications and an overview of the research area, which also summarizes the main results of the work. In the design of millimeter-wave active and passive components the main focus is on realized CMOS components and techniques for pushing nanoscale CMOS circuits beyond 100 GHz. Test structures for measuring and analyzing these components are shown. Topologies for a coplanar waveguide, microstrip line, and slow-wave coplanar waveguide that are suitable for implementing transmission lines in nanoscale CMOS are presented. It is demonstrated that the proposed slow-wave coplanar waveguide improves the performance of the transistor-matching networks when compared to a conventional coplanar waveguide and the floating slow-wave shield reduces losses and simplifies modeling when extended below other passives, such as DC decoupling and RF short-circuiting capacitors. Furthermore, wideband spiral transmission line baluns in CMOS at millimeter-wave frequencies are demonstrated. The design of amplifiers and a wideband resistive mixer utilizing the developed components in 65-nm CMOS are shown. A 40-GHz amplifier achieved a +6-dBm 1-dB output compression point and a saturated output power of 9.6 dBm with a miniature chip size of 0.286 mm². The measured noise figure and gain of the 60-GHz amplifier were 5.6 dB and 11.5 dB, respectively. The V-band balanced resistive mixer achieved a 13.5-dB upconversion loss and 34-dB LO-to-RF isolation with a chip area of 0.47 mm². In downconversion, the measured conversion loss and 1-dB input compression point were 12.5 dB and +5 dBm, respectively. The design and experimental results of low-noise and power amplifiers are presented. Two wideband low-noise amplifiers were implemented in a 100-nm metamorphic high electron mobility transistor (HEMT) technology. The amplifiers achieved a 22.5-dB gain and a 3.3-dB noise figure at 94 GHz and a 18-19-dB gain and a 5.5-7.0-dB noise figure from 130 to 154 GHz. A 60-GHz power amplifier implemented in a 150-nm pseudomorphic HEMT technology exhibited a +17-dBm 1-dB output compression point with a 13.4-dB linear gain. In this thesis, the main system-level aspects of millimeter-wave transmitters and receivers are discussed and the experimental circuits of a 60-GHz transmitter front-end and a 60-GHz receiver with an on-chip analog-to-digital converter implemented in 65-nm CMOS are shown. The receiver exhibited a 7-dB noise figure, while the saturated output power of the transmitter front-end was +2 dBm. Furthermore, a wideband W-band transmitter front-end with an output power of +6.6 dBm suitable for both image-rejecting superheterodyne and direct-conversion transmission is demonstrated in 65-nm CMOS

    Passive combining network for THz phased arrays

    Get PDF
    Abstract. Power combiners play an important role in the phased array transceivers at mmWave and THz frequencies. Wilkinson combiner has been in use for a long time and is considered one of the best power combiners due to its good port isolation and low losses. In this work theoretical and simulation studies have been done to design the power combiner for sub-THz receiver front-end in the IHP 130nm SiGe process. The Wilkinson combiner designed in this work is able to provide decent performance around 300GHz frequency and shows good isolation between the input ports. The differential Wilkinson combiner has input combining port isolation of -18.2dB and reflection coefficients are around -8.5±0.5dB. While from the transmission coefficients the path loss observed is around 3.7dB. Besides this the differential Wilkinson combiner has also provided decent performance with the phase shifter testbench

    BiCMOS Millimetre-wave low-noise amplifier

    Get PDF
    Abstract: Please refer to full text to view abstract.D.Phil. (Electrical and Electronic Engineering

    Interference suppression techniques for millimeter-wave integrated receiver front ends

    Get PDF

    CMOS Front-End Circuits in 45-nm SOI Suitable for Modular Phased-Array 60-GHz Radios

    Get PDF
    Next Fifth-generation (5G) wireless technologies enabling ultra-wideband spectrum availability and increased system capacity can achieve multi-gigabit/s (Gbps) data rates suitable for ultra-high-speed internet access around the 60-GHz band (i.e., Wi-Gig Technology). This mm-wave band is unlicensed and experiences high propagation power losses. Therefore, it is suitable for short-range communications and requires antenna arrays to satisfy the link budget requirements. Half-duplex reconfigurable phased-array transceivers require wideband, low-cost, highly integrated front-end circuits such as bilateral RF switches, low-noise/power amplifiers, passive RF splitters/combiners, and phase shifters implemented in deep sub-micron CMOS. In this dissertation, analysis, design, and verification of essential CMOS front-end components are covered and fabricated in GlobalFoundries 45-nm RF-SOI CMOS technology. Firstly, a fully-differential, single-pole, single-throw (SPST) switch capable of high isolation in broadband CMOS transceivers is described. The SPST switch realizes better than 50-dB isolation (ISO) across DC to 43 GHz while maintaining an insertion loss (IL) below 3 dB. Measured RF input power for 1-dB compression (IP1dB) of the IL is +19.6 dBm, and the measured input third-order intercept point (IIP3) is +30.4 dBm (both assuming differential inputs at 20 GHz). The prototype has an active area of 0.0058 mm^2. Secondly, a single-pole double-throw (SPDT) switch is implemented using the SPST concept by using a balun to convert the shared differential path to a single-ended antenna port. The SPDT simulations predict less than 3.5-dB IL and greater than 40-dB ISO across 55 to 65 GHz frequency band. An IP1dB of +21 dBm is expected from large-signal simulations. The prototype has an active area of 0.117 mm^2. Thirdly, a fully-differential switched-LC topology adopted with slow-wave artificial transmission line concept, and phase inversion network is described for a 360-degree phase shift range with 11.25-degree phase resolution. The average IL of the complete phase shifter is 5.3 dB with less than 1-dB rms IL error. Furthermore, the IP1dB of the phase shifter is +16 dBm. The prototype has an active area of 0.245 mm^2. Lastly, a fully-differential, 2-stage, common-source (CS) low-noise amplifier (LNA) is developed with wideband matching from 57.8 GHz to 67 GHz, a maximum simulated forward power gain of 20.8 dB, and a minimum noise figure of 3.07 dB. The LNA consumes 21 mW and predicts an OP1dB of 4.8 dBm from the 1-V supply. The LNA consumes an active area of 0.028 mm^2

    III-V Nanowire MOSFET High-Frequency Technology Platform

    Get PDF
    This thesis addresses the main challenges in using III-V nanowireMOSFETs for high-frequency applications by building a III-Vvertical nanowire MOSFET technology library. The initial devicelayout is designed, based on the assessment of the current III-V verticalnanowire MOSFET with state-of-the-art performance. The layout providesan option to scale device dimensions for the purpose of designing varioushigh-frequency circuits. The nanowire MOSFET device is described using1D transport theory, and modeled with a compact virtual source model.Device assessment is performed at high frequencies, where sidewall spaceroverlaps have been identified and mitigated in subsequent design iterations.In the final stage of the design, the device is simulated with fT > 500 GHz,and fmax > 700 GHz.Alongside the III-V vertical nanowire device technology platform, adedicated and adopted RF and mm-wave back-end-of-line (BEOL) hasbeen developed. Investigation into the transmission line parameters revealsa line attenuation of 0.5 dB/mm at 50 GHz, corresponding to state-ofthe-art values in many mm-wave integrated circuit technologies. Severalkey passive components have been characterized and modeled. The deviceinterface module - an interconnect via stack, is one of the prominentcomponents. Additionally, the approach is used to integrate ferroelectricMOS capacitors, in a unique setting where their ferroelectric behavior iscaptured at RF and mm-wave frequencies.Finally, circuits have been designed. A proof-of-concept circuit, designedand fabricated with III-V lateral nanowire MOSFETs and mm-wave BEOL, validates the accuracy of the BEOL models, and the circuit design. Thedevice scaling is shown to be reflected into circuit performance, in aunique device characterization through an amplifier noise-matched inputstage. Furthermore, vertical-nanowire-MOSFET-based circuits have beendesigned with passive feedback components that resonate with the devicegate-drain capacitance. The concept enables for device unilateralizationand gain boosting. The designed low-noise amplifiers have matching pointsindependent on the MOSFET gate length, based on capacitance balancebetween the intrinsic and extrinsic capacitance contributions, in a verticalgeometry. The proposed technology platform offers flexibility in device andcircuit design and provides novel III-V vertical nanowire MOSFET devicesand circuits as a viable option to future wireless communication systems

    Apport des lignes à ondes lentes S-CPW aux performances d'un front-end millimétrique en technologie CMOS avancée

    Get PDF
    L objectif de ce travail est de concevoir et de caractériser un front-end millimétriqueutilisant des lignes de propagation à ondes lentes S-CPW optimisées en technologies CMOS avancées.Ces lignes présentant des facteurs de qualité 2 à 3 fois supérieurs à ceux des lignes classiques de typemicroruban ou CPW.Dans le premier chapitre, l impact de l évolution des noeuds technologiques CMOS sur lesperformances des transistors MOS aux fréquences millimétriques et sur les lignes de propagation ainsiqu un état de l art concernant les performances des front-end sont présentés. Le deuxième chapitreconcerne la réalisation des lignes S-CPW dans différentes technologies CMOS et la validation d unmodèle phénoménologique électrique équivalent. Le troisième chapitre est dédié à la conceptiond amplificateurs de puissance à 60 GHz utilisant ces lignes S-CPW en technologies CMOS 45 et65 nm. Cette étude a permis de mettre en évidence l apport des lignes à ondes lentes aux performancesdes amplificateurs de puissance fonctionnant dans la gamme des fréquences millimétriques. Uneméthode de conception basée sur les règles d électro-migration et permettant une optimisation desperformances a été développée. Finalement, un amplificateur faible bruit et un commutateur d antennetravaillant à 60 GHz et à base de lignes S-CPW ont été conçus en technologie CMOS 65 nm afin degénéraliser l impact de ce type de lignes sur les performances des front-end millimétriques.The objective of this work is to design and characterize a millimeter-wave front-end usingthe optimized slow-wave transmission lines S-CPW in advanced CMOS technologies. The qualityfactor of these transmission lines is twice to three times higher than that of the conventionaltransmission lines such as microstrip lines and coplanar waveguides.In the first chapter, the influence of CMOS scaling-down on the performance of transistors atmillimeter-wave frequencies and on the transmission lines was studied. In addition, a state of the artwith regard to the performance of the front-end was presented. The second chapter concerns about therealization of the S-CPW lines in different CMOS technologies and the validation of an electricalequivalent model. The third chapter is dedicated to the design of 60-GHz power amplifiers using theseS-CPW lines in CMOS 45 and 65 nm technologies. This study highlighted the performanceenhancement of power amplifiers operating at millimeter-wave frequencies by using the slow-wavetransmission lines. A design method based on the electro-migration rules was also developed. Finally,a low noise amplifier and an antenna switch operating at 60 GHz were designed in CMOS 65 nm inorder to generalize the impact of such transmission lines on the performance of the millimeter-wavefront-end.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Architectures, Antennas and Circuits for Millimeter-wave Wireless Full-Duplex Applications

    Get PDF
    Demand for wireless network capacity keeps growing exponentially every year, as a result a 1000-fold increase in data traffic is projected over the next 10 years in the context of 5G wireless networks. Solutions for delivering the 1000-fold increase in capacity fall into three main categories: deploying smaller cells, allocating more spectrum and improving spectral efficiency of wireless systems. Smaller cells at RF frequencies (1-6GHz) are unlikely to deliver the demanded capacity increase. On the other hand, millimeter-wave spectrum (frequencies over 24GHz) offers wider, multi-GHz channel bandwidths, and therefore has gained significant research interest as one of the most promising solutions to address the data traffic demands of 5G. Another disruptive technology is full-duplex which breaks a century-old assumption in wireless communication, by simultaneous transmission and reception on the same frequency channel. In doing so, full-duplex offers many benefits for wireless networks, including an immediate spectral efficiency improvement in the physical layer. Although FD promises great benefits, self-interference from the transmitter to its own receiver poses a fundamental challenge. The self-interference can be more than a billion times stronger than the desired signal and must be suppressed below the receiver noise floor. In recent years, there has been some research efforts on fully-integrated full-duplex RF transceivers, but mm-wave fully-integrated full-duplex systems, are still in their infancy. This dissertation presents novel architectures, antenna and circuit techniques to merge two exciting technologies, mm-wave and full-duplex, which can potentially offer the dual benefits of wide bandwidths and improved spectral efficiency. To this end, two different antenna interfaces, namely a wideband reconfigurable T/R antenna pair with polarization-based antenna cancellation and an mm-wave fully-integrated magnetic-free non-reciprocal circulator, are presented. The polarization-based antenna cancellation is employed in conjunction with the RF and digital cancellation to design a 60GHz full-duplex 45nm SOI CMOS transceiver with nearly 80dB self-interference suppression. The concepts and prototypes presented in this dissertation have also profound implications for emerging applications such as vehicular radars, 5G small-cell base-stations and virtual reality

    Integrated Circuit and Antenna Technology for Millimeter-wave Phased Array Radio Front-end

    Get PDF
    Ever growing demands for higher data rate and bandwidth are pushing extremely high data rate wireless applications to millimeter-wave band (30-300GHz), where sufficient bandwidth is available and high data rate wireless can be achieved without using complex modulation schemes. In addition to the communication applications, millimeter-wave band has enabled novel short range and long range radar sensors for automotive as well as high resolution imaging systems for medical and security. Small size, high gain antennas, unlicensed and worldwide availability of released bands for communication and a number of other applications are other advantages of the millimeter-wave band. The major obstacle for the wide deployment of commercial wireless and radar systems in this frequency range is the high cost and bulky nature of existing GaAs- and InP-based solutions. In recent years, with the rapid scaling and development of the silicon-based integrated circuit technologies such as CMOS and SiGe, low cost technologies have shown acceptable millimeter-wave performance, which can enable highly integrated millimeter-wave radio devices and reduce the cost significantly. Furthermore, at this range of frequencies, on-chip antenna becomes feasible and can be considered as an attractive solution that can further reduce the cost and complexity of the radio package. The propagation channel challenges for the realization of low cost and reliable silicon-based communication devices at millimeter-wave band are severe path loss as well as shadowing loss of human body. Silicon technology challenges are low-Q passive components, low breakdown voltage of active devices, and low efficiency of on-chip antennas. The main objective of this thesis is to investigate and to develop antenna and front-end for cost-effective silicon based millimeter-wave phased array radio architectures that can address above challenges for short range, high data rate wireless communication as well as radar applications. Although the proposed concepts and the results obtained in this research are general, as an important example, the application focus in this research is placed on the radio aspects of emerging 60 GHz communication system. For this particular but extremely important case, various aspects of the technology including standard, architecture, antenna options and indoor propagation channel at presence of a human body are studied. On-chip dielectric resonator antenna as a radiation efficiency improvement technique for an on-chip antenna on low resistivity silicon is presented, developed and proved by measurement. Radiation efficiency of about 50% was measured which is a significant improvement in the radiation efficiency of on-chip antennas. Also as a further step, integration of the proposed high efficiency antenna with an amplifier in transmit and receive configurations at 30 GHz is successfully demonstrated. For the implementation of a low cost millimeter-wave array antenna, miniaturized, and efficient antenna structures in a new integrated passive device technology using high resistivity silicon are designed and developed. Front-end circuit blocks such as variable gain LNA, continuous passive and active phase shifters are investigated, designed and developed for a 60GHz phased array radio in CMOS technology. Finally, two-element CMOS phased array front-ends based on passive and active phase shifting architectures are proposed, developed and compared
    • …
    corecore