533 research outputs found

    Application of Channel Modeling for Indoor Localization Using TOA and RSS

    Get PDF
    Recently considerable attention has been paid to indoor geolocation using wireless local area networks (WLAN) and wireless personal area networks (WPAN) devices. As more applications using these technologies are emerging in the market, the need for accurate and reliable localization increases. In response to this need, a number of technologies and associated algorithms have been introduced in the literature. These algorithms resolve the location either by using estimated distances between a mobile station (MS) and at least three reference points (via triangulation) or pattern recognition through radio frequency (RF) fingerprinting. Since RF fingerprinting, which requires on site measurements is a time consuming process, it is ideal to replace this procedure with the results obtained from radio channel modeling techniques. Localization algorithms either use the received signal strength (RSS) or time of arrival (TOA) of the received signal as their localization metric. TOA based systems are sensitive to the available bandwidth, and also to the occurrence of undetected direct path (UDP) channel conditions, while RSS based systems are less sensitive to the bandwidth and more resilient to UDP conditions. Therefore, the comparative performance evaluation of different positioning systems is a multifaceted and challenging problem. This dissertation demonstrates the viability of radio channel modeling techniques to eliminate the costly fingerprinting process in pattern recognition algorithms by introducing novel ray tracing (RT) assisted RSS and TOA based algorithms. Two sets of empirical data obtained by radio channel measurements are used to create a baseline for comparative performance evaluation of localization algorithms. The first database is obtained by WiFi RSS measurements in the first floor of the Atwater Kent laboratory; an academic building on the campus of WPI; and the other by ultra wideband (UWB) channel measurements in the third floor of the same building. Using the results of measurement campaign, we specifically analyze the comparative behavior of TOA- and RSS-based indoor localization algorithms employing triangulation or pattern recognition with different bandwidths adopted in WLAN and WPAN systems. Finally, we introduce a new RT assisted hybrid RSS-TOA based algorithm which employs neural networks. The resulting algorithm demonstrates a superior performance compared to the conventional RSS and TOA based algorithms in wideband systems

    Research on Impulse Radio Ultra - wideband Positioning Method Based on Combined BP Neural Network and SVM

    Get PDF
    Intelligent tour guide is a comprehensive service based on tourist\u27s location, which is closely related to Geographic Information System (GIS), mobile positioning technology and Location-Based Service (LBS). But the intelligent tour guide field urgently needs the integrated positioning and navigation technology inside and outside the room. IR-UWB technology is suitable for positioning, tracking, navigation and communication in complex indoor environment, and is considered as the most potential indoor positioning technology to realize seamless connection between indoor and outdoor with outdoor positioning technologies such as GPS. However, one of the main problems facing IR-UWB positioning is Non-Line-Of-Sight (NLOS) error. Based on the advantages of BP neural network and support vector machine, this paper proposes a multi-model fusion algorithm to mitigate the NLOS propagation error of the time difference of arrival (TDOA) and the angle of arrival (AOA) of IR-UWB signal, and then uses TDOA/AOA hybrid positioning that mitigates the NLOS error. Simulation results show that the combined algorithm has stronger NLOS resistance and higher positioning accuracy than the single machine learning algorithm in mitigation NLOS errors

    Target Tracking in Confined Environments with Uncertain Sensor Positions

    Get PDF
    To ensure safety in confined environments such as mines or subway tunnels, a (wireless) sensor network can be deployed to monitor various environmental conditions. One of its most important applications is to track personnel, mobile equipment and vehicles. However, the state-of-the-art algorithms assume that the positions of the sensors are perfectly known, which is not necessarily true due to imprecise placement and/or dropping of sensors. Therefore, we propose an automatic approach for simultaneous refinement of sensors' positions and target tracking. We divide the considered area in a finite number of cells, define dynamic and measurement models, and apply a discrete variant of belief propagation which can efficiently solve this high-dimensional problem, and handle all non-Gaussian uncertainties expected in this kind of environments. Finally, we use ray-tracing simulation to generate an artificial mine-like environment and generate synthetic measurement data. According to our extensive simulation study, the proposed approach performs significantly better than standard Bayesian target tracking and localization algorithms, and provides robustness against outliers.Comment: IEEE Transactions on Vehicular Technology, 201

    Positioning and Sensing System Based on Impulse Radio Ultra-Wideband Technology

    Get PDF
    Impulse Radio Ultra-Wideband (IR-UWB) is a wireless carrier communication technology using nanosecond non-sinusoidal narrow pulses to transmit data. Therefore, the IR-UWB signal has a high resolution in the time domain and is suitable for high-precision positioning or sensing systems in IIoT scenarios. This thesis designs and implements a high-precision positioning system and a contactless sensing system based on the high temporal resolution characteristics of IR-UWB technology. The feasibility of the two applications in the IIoT is evaluated, which provides a reference for human-machine-thing positioning and human-machine interaction sensing technology in large smart factories. By analyzing the commonly used positioning algorithms in IR-UWB systems, this thesis designs an IRUWB relative positioning system based on the time of flight algorithm. The system uses the IR-UWB transceiver modules to obtain the distance data and calculates the relative position between the two individuals through the proposed relative positioning algorithm. An improved algorithm is proposed to simplify the system hardware, reducing the three serial port modules used in the positioning system to one. Based on the time of flight algorithm, this thesis also implements a contactless gesture sensing system with IR-UWB. The IR-UWB signal is sparsified by downsampling, and then the feature information of the signal is obtained by level-crossing sampling. Finally, a spiking neural network is used as the recognition algorithm to classify hand gestures

    Artificial neural networks for location estimation and co-cannel interference suppression in cellular networks

    Get PDF
    This thesis reports on the application of artificial neural networks to two important problems encountered in cellular communications, namely, location estimation and co-channel interference suppression. The prediction of a mobile location using propagation path loss (signal strength) is a very difficult and complex task. Several techniques have been proposed recently mostly based on linearized, geometrical and maximum likelihood methods. An alternative approach based on artificial neural networks is proposed in this thesis which offers the advantages of increased flexibility to adapt to different environments and high speed parallel processing. Location estimation provides users of cellular telephones with information about their location. Some of the existing location estimation techniques such as those used in GPS satellite navigation systems require non-standard features, either from the cellular phone or the cellular network. However, it is possible to use the existing GSM technology for location estimation by taking advantage of the signals transmitted between the phone and the network. This thesis proposes the application of neural networks to predict the location coordinates from signal strength data. New multi-layered perceptron and radial basis function based neural networks are employed for the prediction of mobile locations using signal strength measurements in a simulated COST-231 metropolitan environment. In addition, initial preliminary results using limited available real signal-strength measurements in a metropolitan environment are also reported comparing the performance of the neural predictors with a conventional linear technique. The results indicate that the neural predictors can be trained to provide a near perfect mapping using signal strength measurements from two or more base stations. The second application of neural networks addressed in this thesis, is concerned with adaptive equalization, which is known to be an important technique for combating distortion and Inter-Symbol Interference (ISI) in digital communication channels. However, many communication systems are also impaired by what is known as co-channel interference (CCI). Many digital communications systems such as digital cellular radio (DCR) and dual polarized micro-wave radio, for example, employ frequency re-usage and often exhibit performance limitation due to co-channel interference. The degradation in performance due to CCI is more severe than due to ISI. Therefore, simple and effective interference suppression techniques are required to mitigate the interference for a high-quality signal reception. The current work briefly reviews the application of neural network based non-linear adaptive equalizers to the problem of combating co-channel interference, without a priori knowledge of the channel or co-channel orders. A realistic co-channel system is used as a case study to demonstrate the superior equalization capability of the functional-link neural network based Decision Feedback Equalizer (DFE) compared to other conventional linear and neural network based non-linear adaptive equalizers.This project was funded by Solectron (Scotland) Ltd

    NON-CONTACT TECHNIQUES FOR HUMAN VITAL SIGN DETECTION AND GAIT ANALYSIS

    Get PDF
    Human vital signs including respiratory rate, heart rate, oxygen saturation, blood pressure, and body temperature are important physiological parameters that are used to track and monitor human health condition. Another important biological parameter of human health is human gait. Human vital sign detection and gait investigations have been attracted many scientists and practitioners in various fields such as sport medicine, geriatric medicine, bio-mechanic and bio-medical engineering and has many biological and medical applications such as diagnosis of health issues and abnormalities, elderly care and health monitoring, athlete performance analysis, and treatment of joint problems. Thoroughly tracking and understanding the normal motion of human limb joints can help to accurately monitor human subjects or patients over time to provide early flags of possible complications in order to aid in a proper diagnosis and development of future comprehensive treatment plans. With the spread of COVID-19 around the world, it has been getting more important than ever to employ technology that enables us to detect human vital signs in a non-contact way and helps protect both patients and healthcare providers from potentially life-threatening viruses, and have the potential to also provide a convenient way to monitor people health condition, remotely. A popular technique to extract biological parameters from a distance is to use cameras. Radar systems are another attractive solution for non-contact human vital signs monitoring and gait investigation that track and monitor these biological parameters without invading people privacy. The goal of this research is to develop non-contact methods that is capable of extracting human vital sign parameters and gait features accurately. To do that, in this work, optical systems including cameras and proper filters have been developed to extract human respiratory rate, heart rate, and oxygen saturation. Feasibility of blood pressure extraction using the developed optical technique has been investigated, too. Moreover, a wideband and low-cost radar system has been implemented to detect single or multiple human subject’s respiration and heart rate in dark or from behind the wall. The performance of the implemented radar system has been enhanced and it has been utilized for non-contact human gait analysis. Along with the hardware, advanced signal processing schemes have been enhanced and applied to the data collected using the aforementioned radar system. The data processing algorithms have been extended for multi-subject scenarios with high accuracy for both human vital sign detection and gait analysis. In addition, different configurations of this and high-performance radar system including mono-static and MIMO have been designed and implemented with great success. Many sets of exhaustive experiments have been conducted using different human subjects and various situations and accurate reference sensors have been used to validate the performance of the developed systems and algorithms

    Probabilistic Graphical Models: an Application in Synchronization and Localization

    Get PDF
    Die Lokalisierung von mobilen Nutzern (MU) in sehr dichten Netzen erfordert häufig die Synchronisierung der Access Points (APs) untereinander. Erstens konzentriert sich diese Arbeit auf die Lösung des Problems der Zeitsynchronisation in 5G-Netzwerken, indem ein hybrider Bayesischer Ansatz für die Schätzung des Taktversatzes und des Versatzes verwendet wird. Wir untersuchen und demonstrieren den beträchtlichen Nutzen der Belief Propagation (BP), die auf factor graphs läuft, um eine präzise netzwerkweite Synchronisation zu erreichen. Darüber hinaus nutzen wir die Vorteile der Bayesischen Rekursiven Filterung (BRF), um den Zeitstempel-Fehler bei der paarweisen Synchronisierung zu verringern. Schließlich zeigen wir die Vorzüge der hybriden Synchronisation auf, indem wir ein großes Netzwerk in gemeinsame und lokale Synchronisationsdomänen unterteilen und so den am besten geeigneten Synchronisationsalgorithmus (BP- oder BRF-basiert) auf jede Domäne anwenden können. Zweitens schlagen wir einen Deep Neural Network (DNN)-gestützten Particle Filter-basierten (DePF)-Ansatz vor, um das gemeinsame MU-Sync&loc-Problem zu lösen. Insbesondere setzt DePF einen asymmetrischen Zeitstempel-Austauschmechanismus zwischen den MUs und den APs ein, der Informationen über den Taktversatz, die Zeitverschiebung der MUs, und die AP-MU Abstand liefert. Zur Schätzung des Ankunftswinkels des empfangenen Synchronisierungspakets nutzt DePF den multiple signal classification Algorithmus, der durch die Channel Impulse Response (CIR) der Synchronisierungspakete gespeist wird. Die CIR wird auch genutzt, um den Verbindungszustand zu bestimmen, d. h. Line-of-Sight (LoS) oder Non-LoS (NLoS). Schließlich nutzt DePF particle Gaussian mixtures, die eine hybride partikelbasierte und parametrische BRF-Fusion der vorgenannten Informationen ermöglichen und die Position und die Taktparameter der MUs gemeinsam schätzen.Mobile User (MU) localization in ultra dense networks often requires, on one hand, the Access Points (APs) to be synchronized among each other, and, on the other hand, the MU-AP synchronization. In this work, we firstly address the former, which eventually provides a basis for the latter, i.e., for the joint MU synchronization and localization (sync&loc). In particular, firstly, this work focuses on tackling the time synchronization problem in 5G networks by adopting a hybrid Bayesian approach for clock offset and skew estimation. Specifically, we investigate and demonstrate the substantial benefit of Belief Propagation (BP) running on Factor Graphs (FGs) in achieving precise network-wide synchronization. Moreover, we take advantage of Bayesian Recursive Filtering (BRF) to mitigate the time-stamping error in pairwise synchronization. Finally, we reveal the merit of hybrid synchronization by dividing a large-scale network into common and local synchronization domains, thereby being able to apply the most suitable synchronization algorithm (BP- or BRF-based) on each domain. Secondly, we propose a Deep Neural Network (DNN)-assisted Particle Filter-based (DePF) approach to address the MU joint sync&loc problem. In particular, DePF deploys an asymmetric time-stamp exchange mechanism between the MUs and the APs, which provides information about the MUs' clock offset, skew, and AP-MU distance. In addition, to estimate the Angle of Arrival (AoA) of the received synchronization packet, DePF draws on the Multiple Signal Classification (MUSIC) algorithm that is fed by the Channel Impulse Response (CIR) experienced by the sync packets. The CIR is also leveraged on to determine the link condition, i.e. Line-of-Sight (LoS) or Non-LoS (NLoS). Finally DePF capitalizes on particle Gaussian mixtures which allow for a hybrid particle-based and parametric BRF fusion of the aforementioned pieces of information and jointly estimate the position and clock parameters of the MUs

    Advanced Techniques for Ground Penetrating Radar Imaging

    Get PDF
    Ground penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in non-destructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR for NDT has been successfully introduced in a wide range of sectors, such as mining and geology, glaciology, civil engineering and civil works, archaeology, and security and defense. In recent decades, improvements in georeferencing and positioning systems have enabled the introduction of synthetic aperture radar (SAR) techniques in GPR systems, yielding GPR–SAR systems capable of providing high-resolution microwave images. In parallel, the radiofrequency front-end of GPR systems has been optimized in terms of compactness (e.g., smaller Tx/Rx antennas) and cost. These advances, combined with improvements in autonomous platforms, such as unmanned terrestrial and aerial vehicles, have fostered new fields of application for GPR, where fast and reliable detection capabilities are demanded. In addition, processing techniques have been improved, taking advantage of the research conducted in related fields like inverse scattering and imaging. As a result, novel and robust algorithms have been developed for clutter reduction, automatic target recognition, and efficient processing of large sets of measurements to enable real-time imaging, among others. This Special Issue provides an overview of the state of the art in GPR imaging, focusing on the latest advances from both hardware and software perspectives

    Ultra-Wideband Technology: Characteristcs, Applications and Challenges

    Full text link
    Ultra-wideband (UWB) technology is a wireless communication technology designed for short-range applications. It is characterized by its ability to generate and transmit radio-frequency energy over an extensive frequency range. This paper provides an overview of UWB technology including its definition, two representative schemes and some key characteristics distinguished from other types of communication. Besides, this paper also analyses some widely used applications of UWB technology and highlights some of the challenges associated with implementing UWB in real-world scenarios. Furthermore, this paper expands upon UWB technology to encompass terahertz technology, providing an overview of the current status of terahertz communication, and conducting an analysis of the advantages, challenges, and certain corresponding solutions pertaining to ultra-wideband THz communication
    corecore