74 research outputs found

    Kernelization and Parameterized Algorithms for 3-Path Vertex Cover

    Full text link
    A 3-path vertex cover in a graph is a vertex subset CC such that every path of three vertices contains at least one vertex from CC. The parameterized 3-path vertex cover problem asks whether a graph has a 3-path vertex cover of size at most kk. In this paper, we give a kernel of 5k5k vertices and an O(1.7485k)O^*(1.7485^k)-time and polynomial-space algorithm for this problem, both new results improve previous known bounds.Comment: in TAMC 2016, LNCS 9796, 201

    Balanced Crown Decomposition for Connectivity Constraints

    Get PDF
    We introduce the balanced crown decomposition that captures the structure imposed on graphs by their connected induced subgraphs of a given size. Such subgraphs are a popular modeling tool in various application areas, where the non-local nature of the connectivity condition usually results in very challenging algorithmic tasks. The balanced crown decomposition is a combination of a crown decomposition and a balanced partition which makes it applicable to graph editing as well as graph packing and partitioning problems. We illustrate this by deriving improved approximation algorithms and kernelization for a variety of such problems. In particular, through this structure, we obtain the first constant-factor approximation for the Balanced Connected Partition (BCP) problem, where the task is to partition a vertex-weighted graph into k connected components of approximately equal weight. We derive a 3-approximation for the two most commonly used objectives of maximizing the weight of the lightest component or minimizing the weight of the heaviest component

    Finding, Hitting and Packing Cycles in Subexponential Time on Unit Disk Graphs

    Get PDF
    We give algorithms with running time 2^{O({sqrt{k}log{k}})} n^{O(1)} for the following problems. Given an n-vertex unit disk graph G and an integer k, decide whether G contains (i) a path on exactly/at least k vertices, (ii) a cycle on exactly k vertices, (iii) a cycle on at least k vertices, (iv) a feedback vertex set of size at most k, and (v) a set of k pairwise vertex disjoint cycles. For the first three problems, no subexponential time parameterized algorithms were previously known. For the remaining two problems, our algorithms significantly outperform the previously best known parameterized algorithms that run in time 2^{O(k^{0.75}log{k})} n^{O(1)}. Our algorithms are based on a new kind of tree decompositions of unit disk graphs where the separators can have size up to k^{O(1)} and there exists a solution that crosses every separator at most O(sqrt{k}) times. The running times of our algorithms are optimal up to the log{k} factor in the exponent, assuming the Exponential Time Hypothesis

    Randomized and Deterministic Parameterized Algorithms and Their Applications in Bioinformatics

    Get PDF
    Parameterized NP-hard problems are NP-hard problems that are associated with special variables called parameters. One example of the problem is to find simple paths of length k in a graph, where the integer k is the parameter. We call this problem the p-path problem. The p-path problem is the parameterized version of the well-known NP-complete problem - the longest simple path problem. There are two main reasons why we study parameterized NP-hard problems. First, many application problems are naturally associated with certain parameters. Hence we need to solve these parameterized NP-hard problems. Second, if parameters take only small values, we can take advantage of these parameters to design very effective algorithms. If a parameterized NP-hard problem can be solved by an algorithm of running time in form of f(k)nO(1), where k is the parameter, f(k) is independent of n, and n is the input size of the problem instance, we say that this parameterized NP-hard problem is fixed parameter tractable (FPT). If a problem is FPT and the parameter takes only small values, the problem can be solved efficiently (it can be solved almost in polynomial time). In this dissertation, first, we introduce several techniques that can be used to design efficient algorithms for parameterized NP-hard problems. These techniques include branch and bound, divide and conquer, color coding and dynamic programming, iterative compression, iterative expansion and kernelization. Then we present our results about how to use these techniques to solve parameterized NP-hard problems, such as the p-path problem and the pd-feedback vertex set problem. Especially, we designed the first algorithm of running time in form of f(k)nO(1) for the pd-feedback vertex set problem. Thus solved an outstanding open problem, i.e. if the pd-feedback vertex set problem is FPT. Finally, we will introduce how to use parameterized algorithm techniques to solve the signaling pathway problem and the motif finding problem from bioinformatics

    On Feedback Vertex Set: New Measure and New Structures

    Full text link
    We present a new parameterized algorithm for the {feedback vertex set} problem ({\sc fvs}) on undirected graphs. We approach the problem by considering a variation of it, the {disjoint feedback vertex set} problem ({\sc disjoint-fvs}), which finds a feedback vertex set of size kk that has no overlap with a given feedback vertex set FF of the graph GG. We develop an improved kernelization algorithm for {\sc disjoint-fvs} and show that {\sc disjoint-fvs} can be solved in polynomial time when all vertices in GFG \setminus F have degrees upper bounded by three. We then propose a new branch-and-search process on {\sc disjoint-fvs}, and introduce a new branch-and-search measure. The process effectively reduces a given graph to a graph on which {\sc disjoint-fvs} becomes polynomial-time solvable, and the new measure more accurately evaluates the efficiency of the process. These algorithmic and combinatorial studies enable us to develop an O(3.83k)O^*(3.83^k)-time parameterized algorithm for the general {\sc fvs} problem, improving all previous algorithms for the problem.Comment: Final version, to appear in Algorithmic
    corecore