9 research outputs found

    Direct Feedback Alignment with Sparse Connections for Local Learning

    Get PDF
    Recent advances in deep neural networks (DNNs) owe their success to training algorithms that use backpropagation and gradient-descent. Backpropagation, while highly effective on von Neumann architectures, becomes inefficient when scaling to large networks. Commonly referred to as the weight transport problem, each neuron's dependence on the weights and errors located deeper in the network require exhaustive data movement which presents a key problem in enhancing the performance and energy-efficiency of machine-learning hardware. In this work, we propose a bio-plausible alternative to backpropagation drawing from advances in feedback alignment algorithms in which the error computation at a single synapse reduces to the product of three scalar values. Using a sparse feedback matrix, we show that a neuron needs only a fraction of the information previously used by the feedback alignment algorithms. Consequently, memory and compute can be partitioned and distributed whichever way produces the most efficient forward pass so long as a single error can be delivered to each neuron. Our results show orders of magnitude improvement in data movement and 2×2\times improvement in multiply-and-accumulate operations over backpropagation. Like previous work, we observe that any variant of feedback alignment suffers significant losses in classification accuracy on deep convolutional neural networks. By transferring trained convolutional layers and training the fully connected layers using direct feedback alignment, we demonstrate that direct feedback alignment can obtain results competitive with backpropagation. Furthermore, we observe that using an extremely sparse feedback matrix, rather than a dense one, results in a small accuracy drop while yielding hardware advantages. All the code and results are available under https://github.com/bcrafton/ssdfa.Comment: 15 pages, 8 figure

    Algorithm Optimization and Hardware Acceleration for Machine Learning Applications on Low-energy Systems

    Get PDF
    Machine learning (ML) has been extensively employed for strategy optimization, decision making, data classification, etc. While ML shows great triumph in its application field, the increasing complexity of the learning models introduces neoteric challenges to the ML system designs. On the one hand, the applications of ML on resource-restricted terminals, like mobile computing and IoT devices, are prevented by the high computational complexity and memory requirement. On the other hand, the massive parameter quantity for the modern ML models appends extra demands on the system\u27s I/O speed and memory size. This dissertation investigates feasible solutions for those challenges with software-hardware co-design

    Energy-Efficient Circuit Designs for Miniaturized Internet of Things and Wireless Neural Recording

    Full text link
    Internet of Things (IoT) have become omnipresent over various territories including healthcare, smart building, agriculture, and environmental and industrial monitoring. Today, IoT are getting miniaturized, but at the same time, they are becoming more intelligent along with the explosive growth of machine learning. Not only do IoT sense and collect data and communicate, but they also edge-compute and extract useful information within the small form factor. A main challenge of such miniaturized and intelligent IoT is to operate continuously for long lifetime within its low battery capacity. Energy efficiency of circuits and systems is key to addressing this challenge. This dissertation presents two different energy-efficient circuit designs: a 224pW 260ppm/°C gate-leakage-based timer for wireless sensor nodes (WSNs) for the IoT and an energy-efficient all analog machine learning accelerator with 1.2 µJ/inference of energy consumption for the CIFAR-10 and SVHN datasets. Wireless neural interface is another area that demands miniaturized and energy-efficient circuits and systems for safe long-term monitoring of brain activity. Historically, implantable systems have used wires for data communication and power, increasing risks of tissue damage. Therefore, it has been a long-standing goal to distribute sub-mm-scale true floating and wireless implants throughout the brain and to record single-neuron-level activities. This dissertation presents a 0.19×0.17mm2 0.74µW wireless neural recording IC with near-infrared (NIR) power and data telemetry and a 0.19×0.28mm2 0.57µW light tolerant wireless neural recording IC.PHDElectrical and Computer EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/169712/1/jongyup_1.pd

    Techniques of Energy-Efficient VLSI Chip Design for High-Performance Computing

    Get PDF
    How to implement quality computing with the limited power budget is the key factor to move very large scale integration (VLSI) chip design forward. This work introduces various techniques of low power VLSI design used for state of art computing. From the viewpoint of power supply, conventional in-chip voltage regulators based on analog blocks bring the large overhead of both power and area to computational chips. Motivated by this, a digital based switchable pin method to dynamically regulate power at low circuit cost has been proposed to make computing to be executed with a stable voltage supply. For one of the widely used and time consuming arithmetic units, multiplier, its operation in logarithmic domain shows an advantageous performance compared to that in binary domain considering computation latency, power and area. However, the introduced conversion error reduces the reliability of the following computation (e.g. multiplication and division.). In this work, a fast calibration method suppressing the conversion error and its VLSI implementation are proposed. The proposed logarithmic converter can be supplied by dc power to achieve fast conversion and clocked power to reduce the power dissipated during conversion. Going out of traditional computation methods and widely used static logic, neuron-like cell is also studied in this work. Using multiple input floating gate (MIFG) metal-oxide semiconductor field-effect transistor (MOSFET) based logic, a 32-bit, 16-operation arithmetic logic unit (ALU) with zipped decoding and a feedback loop is designed. The proposed ALU can reduce the switching power and has a strong driven-in capability due to coupling capacitors compared to static logic based ALU. Besides, recent neural computations bring serious challenges to digital VLSI implementation due to overload matrix multiplications and non-linear functions. An analog VLSI design which is compatible to external digital environment is proposed for the network of long short-term memory (LSTM). The entire analog based network computes much faster and has higher energy efficiency than the digital one
    corecore