173 research outputs found

    Small Footprint Multilayered Millimeter-Wave Antennas and Feeding Networks for Multi-Dimensional Scanning and High-Density Integrated Systems

    Get PDF
    This paper overviews the state-of-the-art of substrate integrated waveguide (SIW) techniques in the design and realization of innovative low-cost, low-profile and low-loss (L3) millimeter-wave antenna elements, feeding networks and arrays for various wireless applications. Novel classes of multilayered antenna structures and systems are proposed and studied to exploit the vertical dimension of planar structures to overcome certain limita-tions in standard two-dimensional (2-D) topologies. The developed structures are based on two techniques, namely multi-layer stacked structures and E-plane corners. Differ-ent E-plane structures realised with SIW waveguide are presented, thereby demonstrating the potential of the proposed techniques as in multi-polarization antenna feeding. An array of 128 elements shows low SLL and height gain with just 200g of the total weight. Two versions of 2-D scanning multi-beam are presented, which effectively combine frequency scanning with beam forming networks. Adding the benefits of wide band performance to the multilayer structure, two bi-layer structures are investigated. Different stacked antennas and arrays are demonstrated to optimise the targeted antenna performances in the smallest footprint possible. These structures meet the requirement for developing inexpensive compact millimeter-wave antennas and antenna systems. Different structures and architectures are theoretically and experimentally studied and discussed for specific space- and ground-based appli-cations. Practical issues such as high-density integration and high-volume manufacturability are also addressed

    High Gain Broadband mm-Wave Antenna Arrays for Short-range Wireless Communication Systems

    Get PDF
    Recently, the ever-increasing demand for fifth-generation (5G) wireless applications has turned millimeter-wave (mm-wave) multi-beam array antenna into quite a promising research direction. Besides offering a remarkable bandwidth for high-speed wireless connectivity, the short wavelengths (1 to 10 mm) of mm-wave signals makes the size of the antenna array with beamforming network (BFN) compatible with a transceiver front-end. The high losses associated with mm-wave wireless links and systems considered the foremost challenge and may restrict the wireless communication range. Therefore, a wideband substrate integrated waveguide (SIW)-based antenna with high gain and beam scanning capabilities would be a solution for these challenges, as it can increase the coverage area of mm-wave wireless systems and mitigate the multipath interference to achieve a high signal to noise (S/N) ratio, and thereby fulfill the link budget requirements. This thesis focuses on the analysis and design of single- and multi-beam mm-wave antenna arrays based on SIW technology to fulfill the growing demand for wideband high-gain planar antenna arrays with beam steering capability at V-band. A tapered slot antenna (TSA) and cavity-backed patch antenna are used as the main radiators in these systems to achieve high-gain and high efficiency over a wide range of operating frequencies. Accordingly, numerous design challenges and BFN-related issues have been addressed in this work. Firstly, an antipodal Fermi tapered slot antenna (AFTSA) with sine-shaped corrugations is proposed at V-band. The antenna provides a flat measured gain of 20 dB with a return loss better than 22 dB. In addition, A broadband double-layer SIW-to-slotline transition is proposed to feed a planar linearly tapered slot antenna (PLTSA) covering the band 46-72 GHz. This new feeding technique, which addresses the bandwidth limits of regular microstrip-to-slotline transitions and avoids the bond wires and air bridges, is utilized to feed a 1x4 SIW-based PLTSA array. Secondly, a new cavity-backed aperture-coupled patch antenna with overlapped 1-dB gain and impedance bandwidth of 43.4 % (56-87 GHz) for |S11| < -10 dB and an average gain of 8.2 dBi is designed. A detailed operating principle is presented. Based on the proposed element, an SIW based 1x8 array is constructed, whose beam-shape is synthesized by amplitude tapering according to Taylor distribution to reduce the sidelobe level. Moreover, a four-layered 4x4 cavity-backed antenna array with a low-loss full-corporate SIW feed network is implemented for gain and aperture efficiency enhancement. The measured results exhibited a bandwidth of 38.4 % (55.2-81.4 GHz) for |S11| < -10 dB and a gain of 20.5 dBi. A single-layer right-angle transition between SIW and air-filled WR15 waveguide along with an equivalent circuit model is introduced and used to measure the performance of both proposed linear and planar arrays. Thirdly, two 1-D scanning multi-beam array designs based on SIW technology, at 60 GHz, have been presented. The first design is a compact multi-beam scanning 4x4 slot antenna array with broadside radiation. The BFN is implemented using a dual-layer 4x4 Butler matrix, where the 450 and 00 phase shifters are designed on a separate layer with different permittivity, resulting in a significant size reduction compared to a conventional single layer. A detailed theoretical analysis, principle of operation and the circuit-model of the proposed phase shifter have been discussed, showing less desperation characteristics compared to ordinary phase shifters. The measured results show an azimuthal coverage of 1210. The second design is a wideband high gain multi-beam tapered slot antenna array with end-fire radiation. An SIW Butler matrix with a modified hybrid crossover is used as a BFN. The fabricated prototype exhibits a field of view of 970 in the azimuthal plane, with measured gain ranges from 12.7 to 15.6 dBi. Lastly, a novel three-layered SIW-fed cavity-backed linearly polarized (LP) patch antenna element is presented, covering a bandwidth of 36.2 % (53-76.4 GHz) with a flat gain ranging from 7.6 to 8.2 dBi. A compact two-layered beam forming network is designed with a size reduction of 28 % compared to a standard one-layered BFN without affecting its s-parameters. The results show that the impedance bandwidth is 31.1 % (51.5-70.5 GHz) for |S11|<-16 dB with an average insertion loss of 1.3 dB. The proposed antenna element and BFN are employed to form a compact 2x2 multibeam array at 60 GHz for 2-D scanning applications. The array shows a bandwidth better than 27 % with a radiation gain of up to 12.4 dBi and radiation efficiency of 80%. The multi-beam array features four tilted beams at 330 from a boresight direction with 450, 1350, 2250 and 3150 in azimuth directions, i.e., on e beam in each quadrant

    Highly efficient impulse-radio ultra-wideband cavity-backed slot antenna in stacked air-filled substrate integrated waveguide technology

    Get PDF
    An impulse-radio ultra-wideband (IR-UWB) cavity-backed slot antenna covering the [5.9803; 6.9989] GHz frequency band of the IEEE 802.15.4a-2011 standard is designed and implemented in an air-filled substrate integrated waveguide (AFSIW) technology for localization applications with an accuracy of at least 3 cm. By relying on both frequency and time-domain optimization, the antenna achieves excellent IR-UWB characteristics. In free-space conditions, an impedance bandwidth of 1.92 GHz (or 29.4%), a total efficiency higher than 89%, a front-to-back ratio of at least 12.1 dB, and a gain higher than 6.3 dBi are measured in the frequency domain. Furthermore, a system fidelity factor larger than 98% and a relative group delay smaller than 100 ps are measured in the time domain within the 3 dB beamwidth of the antenna. As a result, the measured time-of-arrival of a transmitted Gaussian pulse, for different angles of arrival, exhibits variations smaller than 100 ps, corresponding to a maximum distance estimation error of 3 cm. Additionally, the antenna is validated in a real-life worst-case deployment scenario, showing that its characteristics remain stable in a large variety of deployment scenarios. Finally, the difference in frequency-and time-domain performance is studied between the antenna implemented in AFSIW and in dielectric filled substrate integrated waveguide (DFSIW) technology. We conclude that DFSIW technology is less suitable for the envisaged precision IR-UWB localization application

    Low-Cost Integrated Waveguide Antenna Front-End Solutions for Fifth Generation Cellular Systems and Beyond

    Get PDF
    RÉSUMÉ : À ondes millimétriques (ou simplement mm - ondes) réseaux d'antennes avec un seul polarisation linéaire (LP ) , double polarisation linéaire ( DLP ) et double polarisation circulaire ( DCP) caractéristiques sont largement utilisés pour de nombreuses applications , il y compris la communication de données sans fil , capteurs radar , passive imagerie , la récupération d'énergie et les systèmes de radiocommunication cognitifs . Parmi les différents types de structure d'alimentation , guide d'ondes présente un excellent candidat pour mettre en oeuvre des réseaux d'alimentation à faible perte et gain élevé réseaux d'antennes sur la plage de fréquence à ondes millimétriques . Ces antennes à base de guide d'ondes - ont été présentant d'excellentes caractéristiques de rayonnement , mais ils ne sont pas faciles à intégrer avec des composants actifs . A la fréquence à ondes millimétriques , SIW ( substrat de guide d'ondes intégré ) est un candidat exceptionnel émergents à mettre en oeuvre une faible perte et des réseaux d'alimentation à faible coût. Antenne SIW - alimenté est capable de produire l'efficacité de rayonnement à haute et le comportement d'impédance à large bande . Dans cette thèse , la technologie de transmission alimentation SIW est choisi pour mettre en oeuvre des réseaux électriques et de phase de distribution pour réaliser une grande efficacité antenne extrémités avant. Les principales contributions scientifiques et techniques peuvent être résumées en deux parties .Dans la première partie , des solutions pour les ouvertures rayonnantes efficacement ont été proposés tels que gain élevé réseaux d'antennes LP , DLP réseaux d'antennes et DCP réseaux d'antennes . Le choix de l'élément rayonnant avec d'excellentes caractéristiques de rayonnement est vital dans la réalisation de gain élevé réseau d'antennes et réseaux phasés, électroniquement orientables . Dans la deuxième partie , de nouvelles techniques ont été proposées pour diriger le faisceau fixe dans des directions multiples en élévation et azimut en utilisant le réseau de décalage de phase passive.----------ABSTRACT Millimeter-wave (or simply mm-wave) antenna arrays with single linear polarization (LP), dual linear polarization (DLP) and dual circular polarization (DCP) characteristics are widely being used for numerous applications including wireless data communication, radar sensors, passive imaging, energy harvesting and cognitive radio systems. Among different types of feeding structure, waveguide presents an excellent candidate to implement low-loss feeding networks and high-gain antenna arrays over mm-wave frequency range. Those waveguide-based antennas have been exhibiting excellent radiation characteristics, but they are not easy to integrate with active components. At mm-wave frequency, SIW (substrate integrated waveguide) is an emerging outstanding candidate to implement low loss and low cost feeding networks. SIW-fed antenna is able to yield high radiation efficiency and broadband impedance behavior. In this thesis, SIW feeding transmission technology is chosen to implement power and phase distributing networks for realizing high efficiency antenna front ends. The main scientific and technical contributions can be summarized into two parts. In the first part, solutions for efficiently radiating apertures have been proposed such as high gain LP antenna arrays, DLP antenna arrays and DCP antenna arrays. The radiating element choice with excellent radiation characteristics is vital in realising high gain antenna array and electronically steerable phased arrays. In the second part, new techniques have been proposed to steer the fixed beam into multiple directions in elevation and azimuth utilizing passive phase shifting network. At 60 GHz frequency, dielectric rod antenna is selected for linearly polarized radiation and cavity backed metallic circular patch antenna is selected to obtain circular polarization radiation. Single rod antenna element is experimentally characterized to validate the proposed concept. In the next stage, high gain antenna array with 45o linear polarization utilizing rod antenna radiating element is demonstrated and feeding implemented in three dimensional (3-D) architecture is integrated along with the 4 x 4 antenna array. The data handling capability of single polarization antenna array is increased up to two fold by integrating two orthogonal polarized antenna arrays with an aperture area of one single polarized array

    Millimeter-Wave Substrate Integrated Waveguide Antenna and Front-End Techniques for Gigabyte Point-to-Point Wireless Services

    Get PDF
    RÉSUMÉ La relativement faible absorption atmosphérique dans les bandes de fréquences E et W a permis le développement de nombreuses applications sans-fil. Les bandes de fréquences de 71-76 GHz, 81-86 GHz et 94.1-97 GHz sont toutes assignées au spectre de communication sans-fil gigabyte par la Federal Communication Commission (FCC) des États-Unis. Lorsque la fréquence augmente vers la région des ondes millimétriques, l’efficacité et la qualité des lignes micro-ruban sont affectées par de sérieuses pertes de transmission et par l’interférence inter-signaux. D’un autre côté, la technologie des guides d’ondes classique est demeurée populaire pour la conception de systèmes haute perfomance dans la bande E/W. Cependant, cette technologie n’est pas appropriée pour une production à grande échelle et à faible coût à cause de sa structure encombrante et coûteuse. De plus, la structure non-planaire des guide d’ondes rend difficile la connection à des composantes planaires actives ainsi qu’à d’autres lignes planaires telles que les lignes micro-ruban et les guides d’ondes coplanaires (CPW). Afin de remédier à ce problème, les circuits intégrés aux substrats (SIC) ont été proposés comme une solution à faible coût, à efficacité élevée, planaire et intégrée au substrat pour des applications à hautes-fréquences. Les guides d’ondes intégrés aux substrats (SIW), faisant partie de la famille des SIC, possède non seulement les avantages des guides d’ondes rectangulaires mais aussi d’autres bénéfices comme un faible coût, une petite taille, un poids léger et la facilité de fabrication par les techniques de fabrication des PCB ou d’autres techniques. Dans cette thèse, nous élargissons la recherche sur les SIW en proposant et développant une variété d’antennes innovatrices, de réseaux d’antennes et de composantes passives millimétriques qui sont appliqués à la conception et à la démonstration de réseaux d’antennes intégrés et d’étages d’entrée de systèmes de communication en bande E/W. Les contributions scientifiques principales du présent travail peuvent être résumées comme suit: Un réseau d’antenne 4x4 utilisant la technologie des guides d’ondes intégrés au substrat (SIW) pour la conception de son réseau d’alimentation est proposé et démontré. Des fentes longitudinales gravées sur la surface métallique du dessus du SIW sont utilisées pour alimenter les éléments du réseau d’antennes. Des cubes composés d’un matériau diélectrique à faible permittivité sont placés au-dessus de chaque réseau d’antenne 1x4 afin d’augmenter le gain des antennes patch. La largeur de bande de deux réseaux d’antennes 4x4 est d’environ 7.5 GHz (94.2-101.8 GHz) avec un gain de 19 dBi.----------ABSTRACT The relatively low atmospheric absorption over E-band and W-band (frequency window) has been spurred many wireless applications. Frequency bands of 71-76 GHz, 81-86 GHz, and 94.1-97 GHz are all allocated by the US Federal Communication Commission (FCC) as parts of gigabyte wireless spectrum. As frequency increases to millimeter wave region, the efficiency and quality of microstrip lines suffer from serious transmission losses and signal interferences. On the other hand, classical waveguide technology has been popular in the design of high-performance millimeter-wave systems at E/W-band. However, this technology is not suitable for low-cost and mass production because of its expensive and bulky structure. In addition, the non-planar structure of waveguide makes it difficult to get connected to planar active components and other planar lines such as microstrip line and coplanar waveguide (CPW). To overcome this bottleneck problem, substrate integrated circuits (SICs) have been proposed as low-cost and high-efficient integrated planar structures for high-frequency applications. Substrate integrated waveguide (SIW), which is part of the SICs family, has manifested not only the advantages of rectangular waveguide but also other benefits such as low cost, compact size, light weight, and easy fabrication using PCB or other processing techniques. In this Ph.D. thesis, we extend the research of SIW to the proposal and development of various innovative antennas, antenna arrays and millimetre-wave passive components, which are applied to the design and demonstration of integrated antenna arrays and E/W-band front-end sub-systems. The principal scientific contributions of this thesis work can be summarized in the following: A 4×4 antenna array is proposed and demonstrated using substrate-integrated waveguide (SIW) technology for the design of its feed network. Longitudinal slots etched on the SIW top metallic surface are used to drive the array antenna elements. Dielectric cubes made of low-permittivity material are placed on top of each 1×4 antenna array to increase the gain of circular patch antenna elements. Measured impedance bandwidths of two 4×4 antenna arrays are about 7.5 GHz (94.2–101.8 GHz) with 19 dBi gain. Design of planar dielectric rod antenna is proposed and studied, which is fed by Substrate Integrated Non-Radiative Dielectric (SINRD) waveguide. This antenna presents numerous interesting features such as broad bandwidth (94-104 GHz), relatively high and stable gain, use of high dielectric constant substrate, and substrate-oriented end-fire radiation

    A Review: Substrate Integrated Waveguide Antennas and Arrays

    Get PDF
    This study aims to provide an overview and deployment of Substrate-Integrated Waveguide (SIW) based antenna and arrays, with different configurations, feeding mechanisms, and performances. Their performance improvement methods, including bandwidth enhancement, size reduction, and gain improvement are also discussed based on available literature. SIW technology, which acts as a bridge between planar and non-planar technology, is a very favorable candidate for the development of components operating at microwave and millimeter wave band. Due to this, SIW antennas and array take the advantages of both classical metallic waveguide, which includes high gain, high power capacity, low cross polarization, and high selectivity, and that of planar antennas which comprises low profile, light weight, low fabrication cost, conformability to planar or bent surfaces, and easy integration with planar circuits

    Analysis and synthesis of leaky-wave devices in planar technology

    Get PDF
    [ESP] ] El trabajo llevado a cabo durante la realización de esta tesis doctoral, se ha centrado en el análisis y síntesis de dispositivos de microondas en tecnología planar. En concreto, se han estudiado diferentes tipos de dispositivos basados en radiación por ondas de fuga "leaky waves", en los cuales las propiedades de radiación están determinadas por la constante de fase del modo "leaky" que es el que determina el ángulo de apuntamiento y por la tasa de radiación que es la que determina la intensidad de los campos radiados. De esta manera, controlando en amplitud y fase el modo "leaky" se puede obtener un control efectivo sobre el diagrama de radiación del dispositivo. Además, con el objetivo de poder obtener de una manera más eficiente las características de propagación de los modos de fuga "leaky" en función de los principales parámetros geométricos de la estructura, se han desarrollado diversas herramientas de análisis modal basadas en la técnica de resonancia transversa de la estructura. La capacidad para obtener un control simultáneo de la constante de propagación compleja del modo "leaky", ha sido demostrada mediante el diseño y fabricación de varios tipos de antena "leaky wave" (LWA) y de otros dispositivos como multiplexores y sistemas de enfoque en campo cercano. Para ello, se ha utilizado la tecnología planar de guía de onda integrada en sustrato (susbstrate integrated waveguide, SIW). Esta recientemente desarrollada tecnología, permite diseñar dispositivos de microondas basados en tecnología clásica de guía de ondas con sistemas de fabricación estándar usados en tecnología de circuitos impresos (printed circuit board, PCB). De esta forma, se pueden integrar en un mismo sustrato muchas de las diferentes partes que forman un sistema de comunicaciones, mejorando así su robustez y compactibilidad, además de reducir el coste y de contar con menores pérdidas que otras tecnologías planares como la microstrip. [ENG] The work developed along this doctoral thesis has been focused on the analysis and synthesis of microwave devices in planar technology. In particular, several types of devices based on the radiation mechanism of leaky waves have been studied. Typically, the radiation properties in leaky-wave devices are determined by the complex propagation constant of the leaky mode, wherein the phase constant is responsible for the pointing angle and the leakage rate for the intensity of the radiated fields. In this manner, by controlling both amplitude and phase of the leaky mode, an effective control over the device's radiation diagram can be obtained. Moreover, with the purpose of efficiently obtaining the leaky mode's radiation properties as function of the main geometrical parameters of the structure, several modal tools based on the transverse resonance analysis of the structure have been performed. In order to demonstrate this simultaneous control over the complex propagation constant in planar technology, several types of leaky-wave devices, including antennas (LWAs), multiplexors and near-field focusing systems, have been designed and manufactured in the technology of substrate integrated waveguide (SIW). This recently proposed technology, allows the design of devices based on classical waveguide technology with standard manufacturing techniques used for printed circuit board (PCB) designs. In this way, most of the parts that form a communication system can be integrated into a single substrate, thus reducing its cost and providing a more robust and compact device, which has less losses compared to other planar technologies such as the microstrip.Universidad Politécnica de Cartagen

    High Gain Planar Antenna Structures for Ka-band Applications

    Get PDF
    Antennas are an essential part of a communication system as they control a coverage area of the signal. The millimeter wave band has the potential to offer numerous radio applications which require the large bandwidth channels. Due to the current cellular subscribers’ demand of higher data rates, even cellular communication is expected to move in millimeter wave communications at Ka band of 26.5 GHz to 40 GHz. However, millimeter waves are sensitive to the high degree of atmospheric and oxygen absorption losses. This challenge of the millimeter wave communication can be tackled by employing high gain antennas. In addition, modern electronic products require compact handheld devices to offer the user-friendly system as well as capture the market. Therefore, planar antenna structures are apt for these communication systems. In this thesis, two antenna structures are presented at the Ka band for millimeter wave communications. Initially, four element patch antenna is presented for high gain in the broadside direction. Patch elements are excited using an aperture coupling from 50Ω microstrip line. Air-gap cavity is used to improve the impedance bandwidth of the design. This structure obtains a relatively moderate impedance bandwidth of 4.6%. The proposed four-element patch antenna exhibits a flat gain over an operating band with 13.8 dB gain at the design frequency. The antenna achieves a wide beamwidth of 700 in H plane. In addition, side lobe levels in E and H planes are -14.5 dB and 23 dB respectively. For the second prototype, an Antipodal Fermi-Linear Tapered Slot Antenna (AFLTSA) is presented to achieve the wide impedance bandwidth with high flat gain for endfire radiation. Substrate Integrated waveguide (SIW) technique is utilized to feed the AFLTSA which reduces insertion losses of the structure. Fermi-Dirac distributed curve in conjunction with a linear curve for a tapered slot increases the coupling of the electric field from a substrate integrated waveguide to the tapered slot. Knife edge rectangular corrugation profile is used at edges of AFLTSA in order to reduce the side lobes and cross polarization levels of radiation pattern. The proposed structure achieves the wide impedance bandwidth to support requirements for high data rate channels. Measurement results from a fabricated prototype exhibit a flat gain over an entire operating frequency band with 16.4 dB gain at 28 GHz. The wide impedance bandwidth is achieved with return loss below 15 dB. Proposed structure has low side lobe levels of -13.9 dB in H plane and -19.5 dB in E plane. In addition, it offers a low cross polarization level of -22 dB

    Performance Improvement of Dense Dielectric Patch Antenna using Partially Reflective Surfaces

    Get PDF
    Recently, millimeter-wave (MMW) band is being considered as the spectrum for future wireless communication systems. Several advantages are achieved by utilizing the millimeter-wave range, including high gain with large available bandwidth, compact size, and high security. Nevertheless, attenuation loss may restrict wireless communication systems’ transmission range. Meanwhile, printed antenna technology has gained the attention of antenna designers’ due to its low profile and ease of fabrication. High-gain antennas are very desirable as a critical part of MMW systems. Designing millimeter wave antennas with high gain characteristics would be a significant advantage due to their high sensitivity to atmospheric absorption losses. Moreover, planar configurations are required in many applications, such as for wireless communication. The main goal of this thesis is to design and propose state of the art designs of Fabry Pérot Cavity antenna (FPCA) designs with several types of superstrates to achieve high gain, wide bandwidth, and high efficiency to satisfy the requirements of today’s advanced wireless communication systems. A dense dielectric patch (DD) antenna is used as the main radiator and designed to operate at 28 GHz. The thesis presents several contributions related to the design and analysis of FPC antennas using several types of superstrates. The first research theme of this thesis has two parts. The first part presents a holey dielectric superstrate applied over a 2×2 dense dielectric square patch antenna array to enhance the gain, improve the bandwidth and efficiency, as well as to reduce the side lobe levels (SLLs). A dense dielectric patch replaces the metallic patch and is used as a radiated element. The measured results show a high gain of 16 dBi, with radiation efficiency of about 93 %, wide bandwidth of 15.3 %, and a reduced SLL. The second part focusses on a partially reflective surface (PRS) unit cell composed of two thin perforated dielectric slabs. The effect of the thicknesses of the unit cell dielectric slabs is discussed in detail. An array of the proposed PRS unit cell is applied over a dense dielectric square patch antenna array to broaden the bandwidth and to enhance the gain as well. The measured results exhibit a 3 dB gain bandwidth of 27 % with a high gain of 16.8 dBi. The second research theme presents an effective method to design a tapered superstrate of an FPC antenna with a DD patch element. This type of superstrate is designed to correct the phase above the superstrate to be almost uniform. The proposed single-layer perforated tapered superstrate is constructed by tapering the relative permittivity to be high in the center of the superstrate slab and then decrease gradually as it moves towards the edges. This tapered relative permittivity is then applied over a single DD patch antenna. The proposed antenna exhibits good performance in terms of the antenna gain and bandwidth. The antenna gain becomes flat and as high as 17.6 dBi. The antenna bandwidth is about 16 %, and the side lobe level of the antenna is very promising. A third theme presents the implementation and design of a high gain dense dielectric patch antenna integrated with a frequency-selective surface (FSS) superstrate. A 7×7-unit cell is used to build the superstrate layer, and applied above the high DD patch antenna. A modified unit cell is proposed to generate a positive reflection phase with high reflection magnitude within the frequency design in order to broaden the antenna bandwidth. A bandwidth of 15.3 % with a high gain of 16 dBi is obtained. Finally, a high gain linearly polarized (LP) substrate integrated waveguide (SIW) cavity antenna based on a high-order mode is implemented, fabricated, and tested. A TE440 mode is excited at 28 GHz. In this design, 4×4 slots are cut into the top metal of the cavity, where each slot is placed above each standing wave peak. These slot cuts contributed to a high gain of 16.4 dBi and radiation efficiency of about 96 %. The LP SIW cavity antenna was then integrated with a linear-to-circular polarization converter developed as a high gain circularly polarized (CP) SIW cavity antenna with high gain and high radiation efficiency of 16 dBi and 96 %, respectively

    A STUDY ON SERIES SLOT ARRAY ANTENNA DESIGN METHODOLOGY AND ITS APPLICATION TO DUAL LINEAR POLARIZATION

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2014. 2. 남상욱.본 논문에서는 임의의 선형편파 발생을 위한 직렬 슬롯 배열안테나 설계 방법을 제시하였다. 45도 기울어진 선형편파 발생이 가능하고 동시에 임피던스 정합, 균일전장 분포를 형성할 수 있도록 '교차 리액턴스 슬롯 쌍'을 기본 방사체로 제안하였다. 이 기본 방사체를 이용하면 개별 방사 슬롯 간의 간격이 관내 파장의 반 파장 간격으로 위치시킬 수 있기 때문에 grating lobe를 억제할 수 있다. 또한, 제안한 안테나 설계 기법은 기판 집적 도파관 기술 (substrate integrated waveguide, SIW)을 통해 구현하였고 전장 시뮬레이터 및 제작, 측정을 통해 설계 기법의 적합성을 검증하였다. 먼저, Ka-밴드 용 선형 및 평면 배열안테나를 설계하였다. 45도 선형편파를 발생시키기 위해 적층의 SIW 구조로 배열안테나를 구현하였으며 균일 전장이 발생되는 원리를 등가회로 및 임피던스, 전류 순환 방정식을 이용하여 검증하였다. 나아가, 전자장 시뮬레이터를 통한 결과와 비교•분석하였다. 두 번째로, 낮은 부엽레벨을 가지도록 개별 방사체의 전장 계수 조절 방법을 제안하였다. 각 직렬 방사 슬롯을 흐르는 모드 전류의 크기를 조절하기 위해 개별 방사체의 위치를 중심선을 따라 이동시킬 수 있다. 이러한 옵셋 조절 방법을 이용하여 ‒20 dB 및 ‒26 dB Dolph-Chebyshev 계수를 가지는 선형 배열안테나를 설계하였고 제안한 방법의 효용성을 제작 및 측정을 통해 검증하였다. 마지막으로, ±45도 이중 선형편파 발생을 위한 설계 기법을 제안하였다. 동일한 개구면을 공유하는 두 선형편파 간의 격리도를 최대화하기 위해 교차 슬롯 간에 수직 조건을 만족할 수 있도록 기판의 유전율 및 방사 SIW의 폭을 결정하였다. 나아가 제안한 설계 기법을 8 × 8 이중 평면 모노펄스 안테나 설계에 응용하였다. 모노펄스 동작을 위해 기존의 금속 도파관 전송선로를 이용해 제작된 비교기를 결합하였으며 반사손실, 방사패턴, 이득 등의 전기적인 결과를 확인하였다.1. Introduction 1 1.1 Conventional Slot Array Antennas for Linear Polarization 3 1.2 Substrated Integrated Waveguide (SIW) Technology 5 2. Linear Slot Array Antenna for 45º-Inclined Linear Polarization 9 2.1 Introduction 9 2.2 Proposed Antenna Configuration 10 2.2.1 Single Slot Module and Impedance Extraction 11 2.2.2 Alternating Reactance Slot Pair 14 2.2.3 Equivalent Circuit Analysis using Recursive Formulas 17 2.2.4 Centered-Inclined Series-to-Series Coupling Slot 20 2.3 Simulation and Measurement 22 2.4 Summary 25 3. Planar Slot Array Antenna for 45º-Inclined Linear Polarization 30 3.1 Introduction 30 3.2 Proposed Antenna Configuration 33 3.3 Feeding Network Design and Analysis 35 3.4 Coupling and Radiating Slot Arrangement for In-Phase Excitation 41 3.5 Wideband Coax-to-SIW Transition Design and Analysis 42 3.6 Simulation and Measurement 48 3.6.1 Uniform Electric Field Distribution 48 3.6.2 Back-to-Back Coax-to-SIW Transition 52 3.6.3 Reflection Coefficient, Gain, and Radiation Patterns 54 3.7 Summary 57 4. Excitation Control Method for Low Sidelobe Level 63 4.1 Introduction 63 4.2 Axial Displacements for Excitation Control 66 4.3 Design Procedure for Excitation Control 73 4.4 Simulation and Measurement 77 4.5 Summary 82 5. Dual Linear Polarized SIW Monopulse Antenna for Tracking Radar 85 5.1 Introduction 85 5.2 Design Considerations for Dual LP Radiating SIWs 88 5.3 The Proposed Dual LP 8 by 8 SIW Monopulse Protptype Antenna 92 5.3.1 Folded Short-Circuited Stubs 95 5.3.2 Shunt-to-Series Coupling Slots 96 5.3.3 Series-to-Series Coupling Slots 97 5.4 RWG Comparator for Monopulse Operation 98 5.5 Experimental Results 103 5.5.1 Dual LP SIW Sub-Array Antenna 103 5.5.2 Dual LP SIW Monopulse Antenna 107 5.6 Summary 109 6. Conclusion 116Docto
    corecore