375 research outputs found

    A large time-step and well-balanced Lagrange-Projection type scheme for the shallow-water equations

    Get PDF
    This work focuses on the numerical approximation of the Shallow Water Equations (SWE) using a Lagrange-Projection type approach. We propose to extend to this context recent implicit-explicit schemes developed in the framework of compressibleflows, with or without stiff source terms. These methods enable the use of time steps that are no longer constrained by the sound velocity thanks to an implicit treatment of the acoustic waves, and maintain accuracy in the subsonic regime thanks to an explicit treatment of the material waves. In the present setting, a particular attention will be also given to the discretization of the non-conservative terms in SWE and more specifically to the well-known well-balanced property. We prove that the proposed numerical strategy enjoys important non linear stability properties and we illustrate its behaviour past several relevant test cases

    Small Collaboration: Advanced Numerical Methods for Nonlinear Hyperbolic Balance Laws and Their Applications (hybrid meeting)

    Get PDF
    This small collaborative workshop brought together experts from the Sino-German project working in the field of advanced numerical methods for hyperbolic balance laws. These are particularly important for compressible fluid flows and related systems of equations. The investigated numerical methods were finite volume/finite difference, discontinuous Galerkin methods, and kinetic-type schemes. We have discussed challenging open mathematical research problems in this field, such as multidimensional shock waves, interfaces with different phases or efficient and problem suited adaptive algorithms. Consequently, our main objective was to discuss novel high-order accurate schemes that reliably approximate underlying physical models and preserve important physically relevant properties. Theoretical questions concerning the convergence of numerical methods and proper solution concepts were addressed as well

    Analyse de quelques schémas numériques pour des problèmes de shallow water

    Get PDF
    We build and analyze mathematically numerical approximations by finite volume methods of weak solutions to hyperbolic systems for geophysical flows. In a first part we approximate the solutions of the shallow water magneto hydrodynamics system with flat bottom. We develop a Godunov scheme using an approximate Riemann solver defined via a relaxation method. Explicit formulas are established for the relaxation speeds, that lead to a scheme satisfying good properties of consistency and stability. It preserves mass, positivity of the fluid height, satisfies a discrete entropy inequality, resolves contact discontinuities, and involves propagation speeds controlled by the initial data. Several numerical tests are performed, endorsing the theoretical results. In a second part we approximate the solutions of the shallow water magneto hydrodynamics system with non-flat bottom. We develop a well-balanced scheme for several steady states at rest. We use the hydrostatic reconstruction method, with reconstructed states for the fluid height and the magnetic field. We get some new corrective terms for the numerical fluxes with respect to the classical framework, and we prove that the obtained scheme preserves the positivity of height, satisfies a semi-discrete entropy inequality, and is consistent. Several numerical tests are presented, endorsing the theoretical results. In a third part we prove the convergence of a kinetic scheme with hydrostatic reconstruction for the Saint-Venant system with topography. Some new estimates on the gradient of approximate solutions are established, by the analysis of energy dissipation. The convergence is obtained by the compensated compactness method, under some hypotheses concerning the initial data and the regularity of the topographyNous élaborons et analysons mathématiquement des approximations numériques par des méthodes de type volumes finis de solutions faibles de systèmes hyperboliques pour des écoulements géophysiques. Dans une première partie nous approchons les solutions du système de la magnétohydrodynamique en faible épaisseur avec un fond plat. Nous développons un schéma de type Godunov utilisant un solveur de Riemann approché défini via une méthode de relaxation. Des expressions explicites sont établies pour les vitesses de relaxation, qui permettent d'obtenir un schéma satisfaisant un ensemble de bonnes propriétés de consistance et de stabilité. Il conserve la masse, préserve la positivité de la hauteur de fluide, vérifie une inégalité d'entropie discrète, résout les discontinuités de contact même résonantes, donne des vitesses de propagations contrôlées par les données initiales. Des tests numériques sont effectués, validant les résultats théoriques énoncés. Dans une seconde partie nous approchons les solutions du système de la magnétohydrodynamique en faible épaisseur avec fond variable. Nous développons un schéma équilibre pour certains états stationnaires au repos. Nous utilisons la méthode de reconstruction hydrostatique, avec des états reconstruits pour la hauteur d'eau et les composantes du champ magnétique. Nous trouvons des termes correctifs pour les flux numériques par rapport au cadre habituel, et nous prouvons que le schéma obtenu préserve la positivité de la hauteur d'eau, vérifie une inégalité d'entropie semi-discrète et est consistant. Des tests numériques sont effectués, validant les résultats théoriques. Dans une troisième partie nous établissons la convergence d'un schéma cinétique avec reconstruction hydrostatique pour le système de Saint-Venant avec topographie. De nouvelles estimations sur le gradient des solutions approchées sont obtenues par l'analyse de la dissipation d'énergie. La convergence est obtenue par la méthode de compacité par compensation, sous des hypothèses sur les données initiales et la régularité du fon

    Entropy Stable Finite Volume Approximations for Ideal Magnetohydrodynamics

    Full text link
    This article serves as a summary outlining the mathematical entropy analysis of the ideal magnetohydrodynamic (MHD) equations. We select the ideal MHD equations as they are particularly useful for mathematically modeling a wide variety of magnetized fluids. In order to be self-contained we first motivate the physical properties of a magnetic fluid and how it should behave under the laws of thermodynamics. Next, we introduce a mathematical model built from hyperbolic partial differential equations (PDEs) that translate physical laws into mathematical equations. After an overview of the continuous analysis, we thoroughly describe the derivation of a numerical approximation of the ideal MHD system that remains consistent to the continuous thermodynamic principles. The derivation of the method and the theorems contained within serve as the bulk of the review article. We demonstrate that the derived numerical approximation retains the correct entropic properties of the continuous model and show its applicability to a variety of standard numerical test cases for MHD schemes. We close with our conclusions and a brief discussion on future work in the area of entropy consistent numerical methods and the modeling of plasmas

    Approximate Riemann Solvers and Robust High-Order Finite Volume Schemes for Multi-Dimensional Ideal MHD Equations

    Get PDF
    We design stable and high-order accurate finite volume schemes for the ideal MHD equations in multi-dimensions. We obtain excellent numerical stability due to some new elements in the algorithm. The schemes are based on three- and five-wave approximate Riemann solvers of the HLL-type, with the novelty that we allow a varying normal magnetic field. This is achieved by considering the semi-conservative Godunov-Powell form of the MHD equations. We show that it is important to discretize the Godunov-Powell source term in the right way, and that the HLL-type solvers naturally provide a stable upwind discretization. Second-order versions of the ENO- and WENO-type reconstructions are proposed, together with precise modifications necessary to preserve positive pressure and density. Extending the discrete source term to second order while maintaining stability requires non-standard techniques, which we present. The first- and second-order schemes are tested on a suite of numerical experiments demonstrating impressive numerical resolution as well as stability, even on very fine meshe
    • …
    corecore