130 research outputs found

    Exploiting Adaptive Techniques to Improve Processor Energy Efficiency

    Get PDF
    Rapid device-miniaturization keeps on inducing challenges in building energy efficient microprocessors. As the size of the transistors continuously decreasing, more uncertainties emerge in their operations. On the other hand, integrating more and more transistors on a single chip accentuates the need to lower its supply-voltage. This dissertation investigates one of the primary device uncertainties - timing error, in microprocessor performance bottleneck in NTC era. Then it proposes various innovative techniques to exploit these opportunities to maintain processor energy efficiency, in the context of emerging challenges. Evaluated with the cross-layer methodology, the proposed approaches achieve substantial improvements in processor energy efficiency, compared to other start-of-art techniques

    All-digital self-adaptive PVTA variation aware clock generation system for DFS

    Get PDF
    An all-digital self-adaptive clock generation system capable of adapt the clock frequency to compensate the effects of PVTA variations on the IC propagation delay and satisfy an externally set propagation length condition is presented. The design uses time-to-digital converters (TDCs) to measure the propagation length and a variable length ring oscillator (VLRO) to synthesize the clock signal. The VLRO naturally adapts its frequency to the PVTA variations suffered by its logic gates while the TDCs are used to track these variations across the chip and modify the VLRO length in order to adapt the clock frequency to them. The system measurements, for a 45nm FPGA, show that it adapts the VLRO length, and therefore the clock frequency, to satisfy the propagation length condition. Measurements also prove the system capabilities to act as a dynamic frequency scaling clock source since the propagation length condition value act as a frequency selection input and a strong linear relation between the input value and the resultant clock period is present.Peer ReviewedPostprint (author’s final draft

    Design of Negative Bias Temperature Instability (NBTI) Tolerant Register File

    Get PDF
    Degradation of transistor parameter values due to Negative Bias Temperature Instability (NBTI) has emerged as a major reliability problem in current and future technology generations. NBTI Aging of a Static Random Access Memory (SRAM) cell leads to a lower noise margin, thereby increasing the failure rate. The register file, which consists of an array of SRAM cells, can suffer from data loss, leading to a system failure. In this work, we study the source of NBTI stress in an architecture and physical register file. Based on our study, we modified the register file structure to reduce the NBTI degradation and improve the overall system reliability. Having evaluated new register file structures, we find that our techniques substantially improve reliability of the register files. The new register files have small overhead, while in some cases they provide saving in area and power

    Evaluating critical bits in arithmetic operations due to timing violations

    Full text link
    Various error models are being used in simulation of voltage-scaled arithmetic units to examine application-level tolerance of timing violations. The selection of an error model needs further consideration, as differences in error models drastically affect the performance of the application. Specifically, floating point arithmetic units (FPUs) have architectural characteristics that characterize its behavior. We examine the architecture of FPUs and design a new error model, which we call Critical Bit. We run selected benchmark applications with Critical Bit and other widely used error injection models to demonstrate the differences

    Architecture Independent Timing Speculation Techniques in VLSI Circuits.

    Full text link
    Conventional digital circuits must ensure correct operation throughout a wide range of operating conditions including process, voltage, and temperature variation. These conditions have an effect on circuit delays, and safety margins must be put in place which come at a power and performance cost. The Razor system proposed eliminating these timing margins by running a circuit with occasional timing errors and correcting the errors when they occur. Several existing Razor style designs have been proposed, however prior to this work, Razor could not be applied blindly or automatically to designs, as the various error correction schemes modified the architecture of the target design. Because of the architectural invasiveness and design complexities of these techniques, no published Razor style system had been applied to a complete existing commercial processor. Additionally, in all prior Razor-style systems, there is a fundamental tradeoff between speculation window and short path, or minimum delay, constraints, limiting the technique’s effectiveness. This thesis introduces the concept of Razor using two-phase latch based timing. By identifying and utilizing time borrowing as an error correction mechanism, it allows for Razor to be applied without the need to reload data or replay instructions. This allows for Razor to be blindly and automatically applied to existing designs without detailed knowledge of internal architecture. Additionally, latch based Razor allows for large speculation windows, up to 100% of nominal circuit delay, because it breaks the connection between minimum delay constraints and speculation window. By demonstrating how to transform conventional flip-flop based designs, including those which make use of clock gating, to two-phase latch based timing, Razor can be automatically added to a large set of existing digital designs. Two forms of latch based Razor are proposed. First, Bubble Razor involves rippling stall cycles throughout a circuit in response to timing errors and is applied to the ARM Cortex-M3 processor, the first ever application of a Razor technique to a complete, existing processor design. Additional work applies Bubble Razor to the ARM Cortex-R4 processor. The second latch based Razor technique, Voltage Razor, uses voltage boosting to correct for timing errors.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/102461/1/mfojtik_1.pd

    Cross-Layer Optimization for Power-Efficient and Robust Digital Circuits and Systems

    Full text link
    With the increasing digital services demand, performance and power-efficiency become vital requirements for digital circuits and systems. However, the enabling CMOS technology scaling has been facing significant challenges of device uncertainties, such as process, voltage, and temperature variations. To ensure system reliability, worst-case corner assumptions are usually made in each design level. However, the over-pessimistic worst-case margin leads to unnecessary power waste and performance loss as high as 2.2x. Since optimizations are traditionally confined to each specific level, those safe margins can hardly be properly exploited. To tackle the challenge, it is therefore advised in this Ph.D. thesis to perform a cross-layer optimization for digital signal processing circuits and systems, to achieve a global balance of power consumption and output quality. To conclude, the traditional over-pessimistic worst-case approach leads to huge power waste. In contrast, the adaptive voltage scaling approach saves power (25% for the CORDIC application) by providing a just-needed supply voltage. The power saving is maximized (46% for CORDIC) when a more aggressive voltage over-scaling scheme is applied. These sparsely occurred circuit errors produced by aggressive voltage over-scaling are mitigated by higher level error resilient designs. For functions like FFT and CORDIC, smart error mitigation schemes were proposed to enhance reliability (soft-errors and timing-errors, respectively). Applications like Massive MIMO systems are robust against lower level errors, thanks to the intrinsically redundant antennas. This property makes it applicable to embrace digital hardware that trades quality for power savings.Comment: 190 page

    Reliability-aware and energy-efficient system level design for networks-on-chip

    Get PDF
    2015 Spring.Includes bibliographical references.With CMOS technology aggressively scaling into the ultra-deep sub-micron (UDSM) regime and application complexity growing rapidly in recent years, processors today are being driven to integrate multiple cores on a chip. Such chip multiprocessor (CMP) architectures offer unprecedented levels of computing performance for highly parallel emerging applications in the era of digital convergence. However, a major challenge facing the designers of these emerging multicore architectures is the increased likelihood of failure due to the rise in transient, permanent, and intermittent faults caused by a variety of factors that are becoming more and more prevalent with technology scaling. On-chip interconnect architectures are particularly susceptible to faults that can corrupt transmitted data or prevent it from reaching its destination. Reliability concerns in UDSM nodes have in part contributed to the shift from traditional bus-based communication fabrics to network-on-chip (NoC) architectures that provide better scalability, performance, and utilization than buses. In this thesis, to overcome potential faults in NoCs, my research began by exploring fault-tolerant routing algorithms. Under the constraint of deadlock freedom, we make use of the inherent redundancy in NoCs due to multiple paths between packet sources and sinks and propose different fault-tolerant routing schemes to achieve much better fault tolerance capabilities than possible with traditional routing schemes. The proposed schemes also use replication opportunistically to optimize the balance between energy overhead and arrival rate. As 3D integrated circuit (3D-IC) technology with wafer-to-wafer bonding has been recently proposed as a promising candidate for future CMPs, we also propose a fault-tolerant routing scheme for 3D NoCs which outperforms the existing popular routing schemes in terms of energy consumption, performance and reliability. To quantify reliability and provide different levels of intelligent protection, for the first time, we propose the network vulnerability factor (NVF) metric to characterize the vulnerability of NoC components to faults. NVF determines the probabilities that faults in NoC components manifest as errors in the final program output of the CMP system. With NVF aware partial protection for NoC components, almost 50% energy cost can be saved compared to the traditional approach of comprehensively protecting all NoC components. Lastly, we focus on the problem of fault-tolerant NoC design, that involves many NP-hard sub-problems such as core mapping, fault-tolerant routing, and fault-tolerant router configuration. We propose a novel design-time (RESYN) and a hybrid design and runtime (HEFT) synthesis framework to trade-off energy consumption and reliability in the NoC fabric at the system level for CMPs. Together, our research in fault-tolerant NoC routing, reliability modeling, and reliability aware NoC synthesis substantially enhances NoC reliability and energy-efficiency beyond what is possible with traditional approaches and state-of-the-art strategies from prior work
    • …
    corecore