5 research outputs found

    Design techniques for dense embedded memory in advanced CMOS technologies

    Get PDF
    University of Minnesota Ph.D. dissertation. February 2012. Major: Electrical Engineering. Advisor: Chris H. Kim. 1 computer file (PDF); viii, 116 pages.On-die cache memory is a key component in advanced processors since it can boost micro-architectural level performance at a moderate power penalty. Demand for denser memories only going to increase as the number of cores in a microprocessor goes up with technology scaling. A commensurate increase in the amount of cache memory is needed to fully utilize the larger and more powerful processing units. 6T SRAMs have been the embedded memory of choice for modern microprocessors due to their logic compatibility, high speed, and refresh-free operation. However, the relatively large cell size and conflicting requirements for read and write make aggressive scaling of 6T SRAMs challenging in sub-22 nm. In this dissertation, circuit techniques and simulation methodologies are presented to demonstrate the potential of alternative options such as gain cell eDRAMs and spin-torque-transfer magnetic RAMs (STT-MRAMs) for high density embedded memories.Three unique test chip designs are presented to enhance the retention time and access speed of gain cell eDRAMs. Proposed bit-cells utilize preferential boostings, beneficial couplings, and aggregated cell leakages for expanding signal window between data `1' and `0'. The design space of power-delay product can be further enhanced with various assist schemes that harness the innate properties of gain cell eDRAMs. Experimental results from the test chips demonstrate that the proposed gain cell eDRAMs achieve overall faster system performances and lower static power dissipations than SRAMs in a generic 65 nm low-power (LP) CMOS process. A magnetic tunnel junction (MTJ) scaling scenario and an efficient HSPICE simulation methodology are proposed for exploring the scalability of STT-MRAMs under variation effects from 65 nm to 8 nm. A constant JC0*RA/VDD scaling method is adopted to achieve optimal read and write performances of STT-MRAMs and thermal stabilities for a 10 year retention are achieved by adjusting free layer thicknesses as well as projecting crystalline anisotropy improvements. Studies based on the proposed methodology show that in-plane STT-MRAM will outperform SRAM from 15 nm node, while its perpendicular counterpart requires further innovations in MTJ material properties in order to overcome the poor write performance from 22 nm node

    Dynamic Power Management of High Performance Network on Chip

    Get PDF
    With increased density of modern System on Chip(SoC) communication between nodes has become a major problem. Network on Chip is a novel on chip communication paradigm to solve this by using highly scalable and efficient packet switched network. The addition of intelligent networking on the chip adds to the chip’s power consumption thus making management of communication power an interesting and challenging research problem. While VLSI techniques have evolved over time to enable power reduction in the circuit level, the highly dynamic nature of modern large SoC demand more than that. This dissertation explores some innovative dynamic solutions to manage the ever increasing communication power in the post sub-micron era. Today’s highly integrated SoCs require great level of cross layer optimizations to provide maximum efficiency. This dissertation aims at the dynamic power management problem from top. Starting with a system level distribution and management down to microarchitecture enhancements were found necessary to deliver maximum power efficiency. A distributed power budget sharing technique is proposed. To efficiently satisfy the established power budget, a novel flow control and throttling technique is proposed. Finally power efficiency of underlying microarchitecture is explored and novel buffer and link management techniques are developed. All of the proposed techniques yield improvement in power-performance efficiency of the NoC infrastructure
    corecore