11 research outputs found

    A 1.1 nW Energy-Harvesting System with 544 pW Quiescent Power for Next-Generation Implants

    Get PDF
    This paper presents a nW power management unit (PMU) for an autonomous wireless sensor that sustains itself by harvesting energy from the endocochlear potential (EP), the 70-100 mV electrochemical bio-potential inside the mammalian ear. Due to the anatomical constraints inside the inner ear, the total extractable power from the EP is limited close to 1.1-6.25 nW. A nW boost converter is used to increase the input voltage (30-55 mV) to a higher voltage (0.8-1.1 V) usable by CMOS circuits in the sensor. A pW charge pump circuit is used to minimize the leakage in the boost converter. Furthermore, ultralow-power control circuits consisting of digital implementations of input impedance adjustment circuits and zero current switching circuits along with Timer and Reference circuits keep the quiescent power of the PMU down to 544 pW. The designed boost converter achieves a peak power conversion efficiency of 56%. The PMU can sustain itself, and a duty-cyled ultralow-power load while extracting power from the EP of a live guinea pig. The PMU circuits have been implemented on a 0.18- μm CMOS process.Semiconductor Research Corporation. Focus Center for Circuit and System Solutions (C2S2)Interconnect Focus Center (United States. Defense Advanced Research Projects Agency and Semiconductor Research Corporation)National Institutes of Health (U.S.) (Grant K08 DC010419)National Institutes of Health (U.S.) (Grant T32 DC00038)Bertarelli Foundatio

    Efficient power management circuits for energy harvesting applications

    Get PDF
    Low power IoT devices are growing in numbers and by 2020 there will be more than 25 Billion of those in areas such as wearables, smart homes, remote surveillance, transportation and industrial systems, including many others. Many IoT electronics either will operate from stand-alone energy supply (e.g., battery) or be self-powered by harvesting from ambient energy sources or have both options. Harvesting sustainable energy from ambient environment plays significant role in extending the operation lifetime of these devices and hence, lower the maintenance cost of the system, which in turn help make them integral to simpler systems. Both for battery-powered and harvesting capable systems, efficient power delivery unit remains an essential component for maximizing energy efficiency. The goal of this research is to investigate the challenges of energy delivery for low power electronics considering both energy harvesting as well as battery-powered conditions and to address those challenges. Different challenges of energy harvesting from low voltage energy sources based on the limitations of the sources, the type of the regulator used and the pattern of the load demands have been investigated. Different aspects of the each challenges are further investigated to seek optimized solutions for both load specific and generalized applications. A voltage boost mechanism is chosen as the primary mechanism to investigate and to addressing those challenges, befitting the need for low power applications which often rely on battery voltage or on low voltage energy harvesting sources. Additionally, a multiple output buck regulator is also discussed. The challenges analyzed include very low voltage start up issues for an inductive boost regulator, cascading of boost regulator stages, and reduction of the number of external component through reusing those. Design techniques for very high conversion ratio, bias current reduction with autonomous bias gating, battery-less cold start, component and power stage multiplexing for reconfigurable and multi-domain regulators are presented. Measurement results from several silicon prototypes are also presented.Ph.D

    Power Management Circuits for Energy Harvesting Applications

    Get PDF
    Energy harvesting is the process of converting ambient available energy into usable electrical energy. Multiple types of sources are can be used to harness environmental energy: solar cells, kinetic transducers, thermal energy, and electromagnetic waves. This dissertation proposal focuses on the design of high efficiency, ultra-low power, power management units for DC energy harvesting sources. New architectures and design techniques are introduced to achieve high efficiency and performance while achieving maximum power extraction from the sources. The first part of the dissertation focuses on the application of inductive switching regulators and their use in energy harvesting applications. The second implements capacitive switching regulators to minimize the use of external components and present a minimal footprint solution for energy harvesting power management. Analysis and theoretical background for all switching regulators and linear regulators are described in detail. Both solutions demonstrate how low power, high efficiency design allows for a self-sustaining, operational device which can tackle the two main concerns for energy harvesting: maximum power extraction and voltage regulation. Furthermore, a practical demonstration with an Internet of Things type node is tested and positive results shown by a fully powered device from harvested energy. All systems were designed, implemented and tested to demonstrate proof-of-concept prototypes

    Design and Fabrication of Bond Wire Micro-Magnetics

    Get PDF
    This thesis presents a new approach for the design and fabrication of bond wire magnetics for power converter applications by using standard IC gold bonding wires and micro-machined magnetic cores. It shows a systematic design and characterization study for bond wire transformers with toroidal and race-track cores for both PCB and silicon substrates. Measurement results show that the use of ferrite cores increases the secondary self-inductance up to 315 µH with a Q-factor up to 24.5 at 100 kHz. Measurement results on LTCC core report an enhancement of the secondary self-inductance up to 23 µH with a Q-factor up to 10.5 at 1.4 MHz. A resonant DC-DC converter is designed in 0.32 µm BCD6s technology at STMicroelectronics with a depletion nmosfet and a bond wire micro-transformer for EH applications. Measures report that the circuit begins to oscillate from a TEG voltage of 280 mV while starts to convert from an input down to 330 mV to a rectified output of 0.8 V at an input of 400 mV. Bond wire magnetics is a cost-effective approach that enables a flexible design of inductors and transformers with high inductance and high turns ratio. Additionally, it supports the development of magnetics on top of the IC active circuitry for package and wafer level integrations, thus enabling the design of high density power components. This makes possible the evolution of PwrSiP and PwrSoC with reliable highly efficient magnetics

    A DC-DC converter architecture for low-power, high-resistance thermoelectric generators for use in body-powered designs

    Get PDF
    This thesis presents a low power DC-DC converter suitable for harvesting energy from high impedance thermoelectric generators (TEGs) for the use in body powered electronics. The chip has been fabricated in a 130nm CMOS technology. To meet the power demands of body powered networks, a novel dual-path architecture capable of efficiently harvesting power at levels below 5 μW has been developed. To control the converter, a low power control loop has been developed. The control loop features a low-power clock and a pulse counting system that is capable of matching the converter impedance with high impedance TEGs. The system consumes less than 900nW of quiescent power and maintains an efficiency of 68% for a load of 5 μW

    Fast-waking and low-voltage thermoelectric and photovoltaic CMOS chargers for energy-harvesting wireless microsensors

    Get PDF
    The small size of wireless microsystems allows them to be deployed within larger systems to sense and monitor various indicators throughout many applications. However, their small size restricts the amount of energy that can be stored in the system. Current microscale battery technologies do not store enough energy to power the microsystems for more than a few months without recharging. Harvesting ambient energy to replenish the on-board battery extend the lifetime of the microsystem. Although light and thermal energy are more practical in some applications than other forms of ambient energy, they nevertheless suffer from long energy droughts. Additionally, due to the very limited space available in the microsystem, the system cannot store enough energy to continue operation throughout these energy droughts. Therefore, the microsystem must reliably wake from these energy droughts, even if the on-board battery has been depleted. The challenge here is waking a microsystem directly from an ambient source transducer whose voltage and power levels are limited due to their small size. Starter circuits must be used to ensure the system wakes regardless of the state of charge of the energy storage device. The purpose of the presented research is to develop, design, simulate, fabricate, test and evaluate CMOS integrated circuits that can reliably wake from no energy conditions and quickly recharge a depleted battery. Since the battery is depleted during startup, the system must use the low voltage produced by the energy harvesting transducer to transfer energy. The presented system has the fastest normalized wake time while reusing the inductor already present in the battery charger for startup, therefore, minimizing the overall footprint of the system.Ph.D

    Microelectronic Design with Integrated Magnetic and Piezoelectric Structures

    Get PDF
    This thesis investigates the possibility of integrating the standard CMOS design process with additional microstructures enhancing circuit functionalities. More specifically, the thesis faces the problem of miniaturization of magnetic and piezoelectric devices mostly focused on the application field of EH (Energy Harvesting) systems and ultra-low power and ultra-low voltage systems. It shows all the most critical aspects which have to be taken into account during the design process of miniaturized inductors for PwrSoC (Power System on Chip) or transformers. Furthermore it shows that it is possible to optimize the inductance value and also performances by means of a proper choice of the size of the planar core or choosing a different layout shape such as a serpentine shape in place of the classic toroidal one. A new formula for the correct evaluation of the MPL (Magnetic Path Length) was also introduced. Concerning the piezoelectric counterpart, it is focused on the design and simulation of various MEMS PTs based on a SOI (Silicon on Insulator) structure with AlN (Alluminum Nitride) as active piezoelectric element, in perspective of having a SoC with embedded MEMS devices and circuitry. Furthermore it demonstrates for the first time the use of a PT (Piezoelectric Transformer) for ultra-low voltage EH applications. A new boost oscillator based on a discrete PZT (Lead Zirconate Titanate) PT instead of a MT (Magnetic Transformer) has been modelled and tested on a circuit made up by discrete devices, showing performances comparable to commercial solutions like the LTC3108 from Linear. Furthermore this novel boost oscillator has been designed in a 0.35μm technology by ST Microelectronics, showing better performances as intuitively expected by the developed mathematical model of the entire system

    Maximization of power generation from thermoelectric generators operating under constant heat flux

    Get PDF
    Thermoelectric generators (TEGs) are used to convert thermal energy into electricity. TEGs present an emissions-free source of power and, despite the low efficiency they offer, with typical values of 5%, they can be used to harvest waste-heat energy in different type of applications. The high robustness presented by TEGs allows their use in low-maintenance applications. TEGs can operate under two different conditions: constant temperature gradient or constant input heat flux. When a TEG operates under constant temperature gradient, the input heat flux varies with the electrical operating conditions of the TEG devices. Under these conditions the TEG is modeled by a constant voltage source with a constant resistance in series with the voltage source. When operated under constant heat flux, the temperature gradient of the TEG changes with the electrical operating conditions of the device. In this situation of constant heat flux, both the equivalent voltage source and the resistance in series with it change their values with the electrical operating point. The location of the Maximum Power Point, or MPP, of the TEG is different in both operating conditions. In constant temperature gradient the MPP is located at half of the instantaneous open-circuit voltage of the TEG, whereas under constant heat flux the MPP is located at an electrical point higher than half of the instantaneous open-circuit voltage. DC/DC converters are mainly used to operate TEGs at the MPP and Maximum Power Point Tracking (MPPT) techniques are used to operate the TEG at the MPP. Due to the difference in the location of the MPP between constant temperature gradient and constant input heat flux, the MPPT techniques will be different between these two operating conditions. This thesis focuses in the study of the location and MPPT techniques for TEGs operated under constant heat flux. A computational model of the TEG for its operation under constant heat flux is first developed. The model of the TEG is then interfaced with the model of a boost, or step-up, converter, which implements a new MPPT algorithm to operate the TEG at the true MPP. The output energy of the power converter is used to charge a lithium-ion (Li-Ion) battery. The complete model of the TEG system is then used to compare the new algorithm proposed in this thesis against two state-of-the-art algorithms: the Fractional Open-Circuit method and the Perturb and Observe method. The comparison is made under three different input heat flux profiles: constant heat flux, ramp-varying heat flux and step-changing heat flux. The last chapter of this thesis presents a hardware implementation of the TEG system and the MPPT power converter. Experimental results are presented for the new and the two state-of-the-art algorithms and a comparison between the three algorithms are presented for the three different input heat flux profiles described previously. The TEG model and the MPPT algorithm presented in this work can be applied to any TEG applications where the TEG operates under constant heat flux

    Communication and energy delivery architectures for personal medical devices

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 219-232).Advances in sensor technologies and integrated electronics are revolutionizing how humans access and receive healthcare. However, many envisioned wearable or implantable systems are not deployable in practice due to high energy consumption and anatomically-limited size constraints, necessitating large form-factors for external devices, or eventual surgical re-implantation procedures for in-vivo applications. Since communication and energy-management sub-systems often dominate the power budgets of personal biomedical devices, this thesis explores alternative usecases, system architectures, and circuit solutions to reduce their energy burden. For wearable applications, a system-on-chip is designed that both communicates and delivers power over an eTextiles network. The transmitter and receiver front-ends are at least an order of magnitude more efficient than conventional body-area networks. For implantable applications, two separate systems are proposed that avoid reimplantation requirements. The first system extracts energy from the endocochlear potential, an electrochemical gradient found naturally within the inner-ear of mammals, in order to power a wireless sensor. Since extractable energy levels are limited, novel sensing, communication, and energy management solutions are proposed that leverage duty-cycling to achieve enabling power consumptions that are at least an order of magnitude lower than previous work. Clinical measurements show the first system demonstrated to sustain itself with a mammalian-generated electrochemical potential operating as the only source of energy into the system. The second system leverages the essentially unlimited number of re-charge cycles offered by ultracapacitors. To ease patient usability, a rapid wireless capacitor charging architecture is proposed that employs a multi-tapped secondary inductive coil to provide charging times that are significantly faster than conventional approaches.by Patrick Philip Mercier.Ph.D
    corecore