1 research outputs found

    Innovative micro-NMR/MRI functionality utilizing flexible electronics and control systems

    Get PDF
    Das zentrale Thema dieser Arbeit ist die Entwicklung und Integration von flexibler Elektronik für Mikro-Magnetresonanz (MR)-Anwendungen. Zwei wichtige Anwendungen wurden in der Dissertation behandelt; eine Anwendung auf dem Gebiet der Magnetresonanztomographie (MRI) und die andere auf dem Gebiet der Kernspinresonanz (NMR). Die MRI-Anwendung konzentriert sich auf die Lösung der Sicherheits- und Zuverlässigkeitsaspekte von MR-Kathetern. Die NMR-Anwendung stellt einen neuartigen Ansatz zur Steigerung des Durchsatzes bei der NMR-Spektroskopie vor. Der erste Teil der Dissertation behandelt die verschiedenen Technologien die zur Herstellung flexibler Elektronik auf der Mikroskala entwickelt wurden. Die behandelten MR-Anwendungen erfordern die Herstellung von Induktoren, Kondensatoren und Dioden auf flexiblen Substraten. Die erste Technologie, die im Rahmen der Mikrofabrikation behandelt wird, ist das Aufbringen einer leitfähigen Startschicht auf flexiblen Substraten. Es wurden verschiedene Techniken getestet und verglichen. Die entwickelte Technologie ermöglicht die Herstellung einer mehrschichtigen leitfähigen Struktur auf einem flexiblen Substrat (50 μ\mum Dicke), die sich zum Umwickeln eines schlanken Rohres (>0,5 mm Durchmesser) eignet. Die zweite Methode ist der Tintenstrahldruck von Kondensatoren mit hoher Dichte und niedrigem Verlustkoeffizienten. Zwei dielektrische Tinten auf Polymerbasis wurden synthetisiert, durch die Dispersion von TiO2_2 und BaTiO3_3 in Benzocyclobuten (BCB) Polymer. Die im Tintenstrahldruckverfahren hergestellten Kondensatoren zeigen eine relativ hohe Kapazität pro Flächeneinheit von bis zu 69 pFmm2^{-2} und erreichen dabei einen Qualitätsfaktor (Q) von etwa 100. Außerdem wurde eine Technik für eine tintenstrahlgedruckte gleichrichtende Schottky-Diode entwickelt. Die letzte behandelte Technologie ist die Galvanisierung der leitenden Startschichten. Die Galvanik ist eine gut erforschte Technologie und ein sehr wichtiger Prozess auf dem Gebiet der Mikrofabrikation. Sie ist jedoch in hohem Maße von der Erfahrung des Bedieners abhängig. Darüber hinaus ist eine präzise Steuerung der Galvanikleistung erforderlich, insbesondere bei der Herstellung kleiner Strukturen, wobei sich die Pulsgalvanik als ein Verfahren erwiesen hat, das ein hohes Maß an Kontrolle über die abgeschiedene Struktur bietet. In diesem Zusammenhang wurde eine hochflexible Stromquelle auf Basis einer Mikrocontroller-Einheit entwickelt, um Genauigkeit in die Erstellung optimaler Galvanikrezepte zu bringen. Die Stromquelle wurde auf Basis einer modifizierten Howland-Stromquelle (MHCS) unter Verwendung eines Hochleistungs-Operationsverstärkers (OPAMP) aufgebaut. Die Stromquelle wurde validiert und verifiziert, und ihre hohe Leistungsfähigkeit wurde durch die Durchführung einiger schwieriger Anwendungen demonstriert, von denen die wichtigste die Verbesserung der Haftung der im Tintenstrahldruckverfahren gedruckten Startschicht auf flexiblen Substraten ist. Der zweite Teil der Dissertation befasst sich mit interventioneller MRT mittels MR-Katheter. MR-Katheter haben potenziell einen erheblichen Einfluss auf den Bereich der minimalinvasiven medizinischen Eingriffe. Implantierte längliche Übertragungsleiter und Detektorspulen wirken wie eine Antenne und koppeln sich an das MR-Hochfrequenz (HF)-Sendefeld an und machen so den Katheter während des Einsatzes in einem MRT-Scanner sichtbar. Durch diese Kopplung können sich die Leiter jedoch erhitzen, was zu einer gefährlichen Erwärmung des Gewebes führt und eine breite Anwendung dieser Technologie bisher verhindert hat. Ein alternativer Ansatz besteht darin, einen Resonator an der Katheterspitze induktive mit einer Oberflächenspule außerhalb des Körpers zu koppeln. Allerdings könnte sich auch dieser Mikroresonator an der Katheterspitze während der Anregungsphase erwärmen. Außerdem ändert sich die Sichtbarkeit der Katheterspitze, wenn sich die axiale Ausrichtung des Katheters während der Bewegung ändert, und kann verloren gehen, wenn die Magnetfelder des drahtlosen Resonators und der externen Spule orthogonal sind. In diesem Beitrag wird die Abstimmkapazität des Mikrodetektors des Katheters drahtlos über eine Impulsfolgensteuerung gesteuert, die an einen HF-Abstimmkreis gesendet wird, der in eine Detektorspule integriert ist. Der integrierte Schaltkreis erzeugt Gleichstrom aus dem übertragenen HF Signal zur Steuerung der Kapazität aus der Ferne, wodurch ein intelligenter eingebetteter abstimmbarer Detektor an der Katheterspitze entsteht. Während der HF-Übertragung erfolgt die Entkopplung durch eine Feinabstimmung der Detektorbetriebsfrequenz weg von der Larmor-Frequenz. Zusätzlich wird ein neuartiges Detektordesign eingeführt, das auf zwei senkrecht ausgerichteten Mikro-Saddle-Spulen basiert, die eine konstante Sichtbarkeit des Katheters für den gesamten Bereich der axialen Ausrichtungen ohne toten Winkel gewährleisten. Das System wurde experimentell in einem 1T MRT-Scanner verifiziert. Der dritte Teil der Dissertation befasst sich mit dem Durchsatz von NMR-Spektroskopie. Flussbasierte NMR ist eine vielversprechende Technik zur Verbesserung des NMR-Durchsatzes. Eine häufige Herausforderung ist jedoch das relativ große Totvolumen im Schlauch, der den NMR-Detektor speist. In diesem Beitrag wird ein neuartiger Ansatz für vollautomatische NMR-Spektroskopie mit hohem Durchsatz und verbesserter Massensensitivität vorgestellt. Der entwickelte Ansatz wird durch die Nutzung von Mikrofluidik-Technologien in Kombination mit Dünnfilm-Mikro-NMR-Detektoren verwirklicht. Es wurde ein passender NMR-Sensor mit einem mikrofluidischen System entwickelt, das Folgendes umfasst: i) einen Mikro-Sattel-Detektor für die NMR-Spektroskopie und ii) ein Paar Durchflusssensoren, die den NMR-Detektor flankieren und an eine Mikrocontrollereinheit angeschlossen sind. Ein mikrofluidischer Schlauch wird verwendet, um eine Probenserie durch den Sondenkopf zu transportieren, die einzelnen Probenbereiche sind durch eine nicht mischbare Flüssigkeit getrennt, das System erlaubt im Prinzip eine unbegrenzte Anzahl an Proben. Das entwickelte System verfolgt die Position und Geschwindigkeit der Proben in diesem zweiphasigen Fluss und synchronisiert die NMR-Akquisition. Der entwickelte kundenspezifische Sondenkopf ist Plug-and-Play-fähig mit marktüblichen NMR-Systemen. Das System wurde erfolgreich zur Automatisierung von flussbasierten NMR-Messungen in einem 500 MHz NMR-System eingesetzt. Der entwickelte Mikro-NMR-Detektor ermöglicht hochauflösende Spektroskopie mit einer NMR-Empfindlichkeit von 2,18 nmol s1/2^{1/2} bei Betrieb der Durchflusssensoren. Die Durchflusssensoren wiesen eine hohe Empfindlichkeit bis zu einem absoluten Unterschied von 0,2 in der relativen Permittivität auf, was eine Differenzierung zwischen den meisten gängigen Lösungsmitteln ermöglichte. Es wurde gezeigt, dass eine vollautomatische NMR-Spektroskopie von neun verschiedenen 120 μ\muL Proben innerhalb von 3,6 min oder effektiv 15,3 s pro Probe erreicht werden konnte
    corecore