3 research outputs found

    Doctor of Philosophy

    Get PDF
    dissertationRecent breakthroughs in silicon photonics technology are enabling the integration of optical devices into silicon-based semiconductor processes. Photonics technology enables high-speed, high-bandwidth, and high-fidelity communications on the chip-scale-an important development in an increasingly communications-oriented semiconductor world. Significant developments in silicon photonic manufacturing and integration are also enabling investigations into applications beyond that of traditional telecom: sensing, filtering, signal processing, quantum technology-and even optical computing. In effect, we are now seeing a convergence of communications and computation, where the traditional roles of optics and microelectronics are becoming blurred. As the applications for opto-electronic integrated circuits (OEICs) are developed, and manufacturing capabilities expand, design support is necessary to fully exploit the potential of this optics technology. Such design support for moving beyond custom-design to automated synthesis and optimization is not well developed. Scalability requires abstractions, which in turn enables and requires the use of optimization algorithms and design methodology flows. Design automation represents an opportunity to take OEIC design to a larger scale, facilitating design-space exploration, and laying the foundation for current and future optical applications-thus fully realizing the potential of this technology. This dissertation proposes design automation for integrated optic system design. Using a buildingblock model for optical devices, we provide an EDA-inspired design flow and methodologies for optical design automation. Underlying these flows and methodologies are new supporting techniques in behavioral and physical synthesis, as well as device-resynthesis techniques for thermal-aware system integration. We also provide modeling for optical devices and determine optimization and constraint parameters that guide the automation techniques. Our techniques and methodologies are then applied to the design and optimization of optical circuits and devices. Experimental results are analyzed to evaluate their efficacy. We conclude with discussions on the contributions and limitations of the approaches in the context of optical design automation, and describe the tremendous opportunities for future research in design automation for integrated optics

    Fluigi: an end-to-end software workflow for microfluidic design

    Get PDF
    One goal of synthetic biology is to design and build genetic circuits in living cells for a range of applications with implications in health, materials, and sensing. Computational design methodologies allow for increased performance and reliability of these circuits. Major challenges that remain include increasing the scalability and robustness of engineered biological systems and streamlining and automating the synthetic biology workflow of “specify-design-build-test.” I summarize the advances in microfluidic technology, particularly microfluidic large scale integration, that can be used to address the challenges facing each step of the synthetic biology workflow for genetic circuits. Microfluidic technologies allow precise control over the flow of biological content within microscale devices, and thus may provide more reliable and scalable construction of synthetic biological systems. However, adoption of microfluidics for synthetic biology has been slow due to the expert knowledge and equipment needed to fabricate and control devices. I present an end-to-end workflow for a computer-aided-design (CAD) tool, Fluigi, for designing microfluidic devices and for integrating biological Boolean genetic circuits with microfluidics. The workflow starts with a ``netlist" input describing the connectivity of microfluidic device to be designed, and proceeds through placement, routing, and design rule checking in a process analogous to electronic computer aided design (CAD). The output is an image of the device for printing as a mask for photolithography or for computer numerical control (CNC) machining. I also introduced a second workflow to allocate biological circuits to microfluidic devices and to generate the valve control scheme to enable biological computation on the device. I used the CAD workflow to generate 15 designs including gradient generators, rotary pumps, and devices for housing biological circuits. I fabricated two designs, a gradient generator with CNC machining and a device for computing a biological XOR function with multilayer soft lithography, and verified their functions with dye. My efforts here show a first end-to-end demonstration of an extensible and foundational microfluidic CAD tool from design concept to fabricated device. This work provides a platform that when completed will automatically synthesize high level functional and performance specifications into fully realized microfluidic hardware, control software, and synthetic biological wetware
    corecore