4 research outputs found

    Investigation of Multiple-valued Logic Technologies for Beyond-binary Era

    Get PDF
    Computing technologies are currently based on the binary logic/number system, which is dependent on the simple on and off switching mechanism of the prevailing transistors. With the exponential increase of data processing and storage needs, there is a strong push to move to a higher radix logic/number system that can eradicate or lessen many limitations of the binary system. Anticipated saturation of Moore’s law and the necessity to increase information density and processing speed in the future micro and nanoelectronic circuits and systems provide a strong background and motivation for the beyond-binary logic system. In this review article, different technologies for Multiple-valued-Logic (MVL) devices and the associated prospects and constraints are discussed. The feasibility of the MVL system in real-world applications rests on resolving two major challenges: (i) development of an efficient mathematical approach to implement the MVL logic using available technologies, and (ii) availability of effective synthesis techniques. This review of different technologies for the MVL system is intended to perform a comprehensive investigation of various MVL technologies and a comparative analysis of the feasible approaches to implement MVL devices, especially ternary logic

    Multiple-valued logic: technology and circuit implementation

    Get PDF
    Title from PDF of title page, viewed March 1, 2023Dissertation advisors: Masud H. Chowdhury and Yugyung LeeVitaIncludes bibliographical references (pages 91-107)Dissertation (Ph.D.)--Department of Computer Science and Electrical Engineering. University of Missouri--Kansas City, 2021Computing technologies are currently based on the binary logic/number system, which is dependent on the simple on and off switching mechanism of the prevailing transistors. With the exponential increase of data processing and storage needs, there is a strong push to move to a higher radix logic/number system that can eradicate or lessen many limitations of the binary system. Anticipated saturation of Moore's law and the necessity to increase information density and processing speed in the future micro and nanoelectronic circuits and systems provide a strong background and motivation for the beyond-binary logic system. During this project, different technologies for Multiple-Valued-Logic (MVL) devices and the associated prospects and constraints are discussed. The feasibility of the MVL system in real-world applications rests on resolving two major challenges: (i) development of an efficient mathematical approach to implement the MVL logic using available technologies and (ii) availability of effective synthesis techniques. The main part of this project can be divided into two categories: (i) proposing different novel and efficient design for various logic and arithmetic circuits such as inverter, NAND, NOR, adder, multiplexer etc. (ii) proposing different fast and efficient design for various sequential and memory circuits. For the operation of the device, two of the very promising emerging technologies are used: Graphene Nanoribbon Field Effect Transistor (GNRFET) and Carbon Nano Tube Field Effect Transistor (CNTFET). A comparative analysis of the proposed designs and several state-of-the-art designs are also given in all the cases in terms of delay, total power, and power-delay-product (PDP). The simulation and analysis are performed using the H-SPICE tool with a GNRFET model available on the Nanohub website and CNTFET model available from Standford University website.Introduction -- Fundamentals and scope of multiple valued logic -- Technological aspect of multiple valued logic circuit -- Ternary logic gates using Graphene Nano Ribbon Field Effect Transistor (GNRFET) -- Ternary arithmetic circuits using Graphene Nano Ribbon Field Effect Transistor (GNRFET) -- Ternary sequential circuits using Graphene Nano Ribbon Field Effect Transistor (GNRFET) -- Ternary memory circuits using Carbon Nano Tube Field Effect Transistor (CNTFET) -- Conclusions & future wor
    corecore