3,858 research outputs found

    Design, analysis and evaluation of sigma-delta based beamformers for medical ultrasound imaging applications

    Get PDF
    The inherent analogue nature of medical ultrasound signals in conjunction with the abundant merits provided by digital image acquisition, together with the increasing use of relatively simple front-end circuitries, have created considerable demand for single-bit beamformers in digital ultrasound imaging systems. Furthermore, the increasing need to design lightweight ultrasound systems with low power consumption and low noise, provide ample justification for development and innovation in the use of single-bit beamformers in ultrasound imaging systems. The overall aim of this research program is to investigate, establish, develop and confirm through a combination of theoretical analysis and detailed simulations, that utilize raw phantom data sets, suitable techniques for the design of simple-to-implement hardware efficient digital ultrasound beamformers to address the requirements for 3D scanners with large channel counts, as well as portable and lightweight ultrasound scanners for point-of-care applications and intravascular imaging systems. In addition, the stability boundaries of higher-order High-Pass (HP) and Band-Pass (BP) Σ−Δ modulators for single- and dual- sinusoidal inputs are determined using quasi-linear modeling together with the describing-function method, to more accurately model the modulator quantizer. The theoretical results are shown to be in good agreement with the simulation results for a variety of input amplitudes, bandwidths, and modulator orders. The proposed mathematical models of the quantizer will immensely help speed up the design of higher order HP and BP Σ−Δ modulators to be applicable for digital ultrasound beamformers. Finally, a user friendly design and performance evaluation tool for LP, BP and HP modulators is developed. This toolbox, which uses various design methodologies and covers an assortment of modulators topologies, is intended to accelerate the design process and evaluation of modulators. This design tool is further developed to enable the design, analysis and evaluation of beamformer structures including the noise analyses of the final B-scan images. Thus, this tool will allow researchers and practitioners to design and verify different reconstruction filters and analyze the results directly on the B-scan ultrasound images thereby saving considerable time and effort

    Designing and optimizing of a novel sigma-delta modulator using PSO algorithm

    Get PDF
    The performance of the conventional Sigma-Delta modulator can be improved by cascading electrical integrator behind the mechanical sensing element. In this paper, a novel Sigma-Delta modulator with a fractional-order PIλDμ controller is proposed and thus extending the traditional Sigma-Delta modulator to a new fractional-order in the Sigma-Delta ADC design field. The fractional-order PIλDμ controller allows fine tuning accuracy in seeking the coefficients for the proposed Sigma-Delta modulator and provides the robust stability in the placement of poles and zeros for compensating the phase delays. The parameters of the proposed fractional-order Sigma-Delta modulator is designed by using swarm intelligent algorithm, which offers opportunity to simplify the process of tuning parameters and further improve the noise performance. Simulation from the proposed fractional-order Sigma-Delta modulator, results of SNR > 134 dB and the noise floor under –170 dB are obtained in frequency range of [5-150 Hz]

    Reorganization of carrier cancellation in a filter chain for delta-sigma applications and optimization of the calibration

    Get PDF
    The thesis documents a feasibility study with respect of the reorganization of a hardware filter chain of a SDADC demodulator. The investigation is based on an existing hardware filter chain architecture which is configurable in order to cover several different applications. The configuration which is in the focus of this thesis is used for a resolver application in which the rotor position of an engine is determined

    A Low-Power Sigma-Delta Modulator for Healthcare and Medical Diagnostic Applications

    Get PDF
    This paper presents a switched-capacitor Sigma-Delta modulator designed in 90-nm CMOS technology, operating at 1.2-V supply voltage. The modulator targets healthcare and medical diagnostic applications where the readout of small-bandwidth signals is required. The design of the proposed A/D converter was optimized to achieve the minimum power consumption and area. A remarkable performance improvement is obtained through the integration of a low-noise amplifier with modified Miller compensation and rail-to-rail output stage. The manuscript also presents a set of design equations, from the small-signal analysis of the amplifier, for an easy design of the modulator in different technology nodes. The Sigma-Delta converter achieves a measured 96-dB dynamic range, over a 250-Hz signal bandwidth, with an oversampling ratio of 500. The power consumption is 30 μW, with a silicon area of 0.39 mm²

    A 0.1–5.0 GHz flexible SDR receiver with digitally assisted calibration in 65 nm CMOS

    Get PDF
    © 2017 Elsevier Ltd. All rights reserved.A 0.1–5.0 GHz flexible software-defined radio (SDR) receiver with digitally assisted calibration is presented, employing a zero-IF/low-IF reconfigurable architecture for both wideband and narrowband applications. The receiver composes of a main-path based on a current-mode mixer for low noise, a high linearity sub-path based on a voltage-mode passive mixer for out-of-band rejection, and a harmonic rejection (HR) path with vector gain calibration. A dual feedback LNA with “8” shape nested inductor structure, a cascode inverter-based TCA with miller feedback compensation, and a class-AB full differential Op-Amp with Miller feed-forward compensation and QFG technique are proposed. Digitally assisted calibration methods for HR, IIP2 and image rejection (IR) are presented to maintain high performance over PVT variations. The presented receiver is implemented in 65 nm CMOS with 5.4 mm2 core area, consuming 9.6–47.4 mA current under 1.2 V supply. The receiver main path is measured with +5 dB m/+5dBm IB-IIP3/OB-IIP3 and +61dBm IIP2. The sub-path achieves +10 dB m/+18dBm IB-IIP3/OB-IIP3 and +62dBm IIP2, as well as 10 dB RF filtering rejection at 10 MHz offset. The HR-path reaches +13 dB m/+14dBm IB-IIP3/OB-IIP3 and 62/66 dB 3rd/5th-order harmonic rejection with 30–40 dB improvement by the calibration. The measured sensitivity satisfies the requirements of DVB-H, LTE, 802.11 g, and ZigBee.Peer reviewedFinal Accepted Versio

    Sonar ultrassónico para cegos com sonificação de obstáculos

    Get PDF
    In this master’s thesis it is intended to develop a portable device that can be used by people with visual impairment in the echolocation of obstacles. This device must be capable of transmitting and detecting ultrasound signals to work as a sonar and still allow its operation as a parametric speaker capable of performing the sonification of obstacles. To do this, it was necessary to develop a Sigma-Delta ADC in FPGA that allows a high density in the independent acquisition of a large number of channels in a small device. Tests performed with the developed Sigma-Delta ADC revealed low distortion and good signal-to-noise ratio, comparable to same type ADCs available on the market. The path for the construction of the device is, then, open.Nesta tese de mestrado pretende-se desenvolver um dispositivo portátil que possa ser usado por pessoas com deficiência visual na ecolocalização de obstáculos. Este dispositivo deverá ser dotado de capacidade de emissão e deteção de ultrassons para funcionar como um sonar e permitir ainda o seu funcionamento como altifalante paramétrico capaz de realizar a sonificação dos obstáculos. Para tal, foi necessário desenvolver uma ADC Sigma-Delta em FPGA que permita uma alta densidade na aquisição independente de um grande número de canais num dispositivo de pequenas dimensões. Os testes realizados com a ADC Sigma-Delta revelaram uma baixa distorção e uma boa relação sinal ruı́do, comparáveis às ADCs do mesmo tipo existentes no mercado. Está assim preparado o caminho para a construção do dispositivo.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    IDDQ testing of a CMOS first order sigma-delta modulator of an 8-bit oversampling ADC

    Get PDF
    This work presents IDDQ testing of a CMOS first order sigma-delta modulator of an 8-bit oversampling analog-to-digital converter using a built-in current sensor [BICS]. Gate-drain, source-drain, gate-source and gate-substrate bridging faults are injected using fault injection transistors. All the four faults cause varying fault currents and are successfully detected by the BICS at a good operation speed. The BICS have a negligible impact on the performance of the modulator and an external pin is provided to completely cut-off the BICS from the modulator. The modulator was designed and fabricated in 1.5 μm n-well CMOS process. The decimator was designed on Altera\u27s FLEXE20K board using Verilog. The modulator and decimator were assembled together to form a sigma-delta ADC

    Theory and applications of delta-sigma analogue-to-digital converters without negative feedback

    Get PDF
    Analog-to-digital converters play a crucial role in modern audio and communication design. Conventional Nyquist converters are suitable only for medium resolutions and require analog components that are precise and highly immune to noise and interference. In contrast, oversampling converters can achieve high resolutions (>20bits) and can be implemented using straightforward, high-tolerance analog components. In conventional oversampled modulators, negative feedback is applied in order to control the dynamic behavior of a system and to realize the attenuation of the quantization noise in the signal band due to noise shaping. However, feedback can also introduce undesirable effects such as limit cycles, jitter problems in continuous-time topologies, and infinite impulse responses. Additionally, it increases the system complexity due to extra circuit components such as nonlinear multi-bit digital-to-analog converters in the feedback path. Moreover, in certain applications such as wireless, biomedical sensory, or microphone implementations feedback cannot be applied. As a result, the main goal of this thesis is to develop sigma-delta data converters without feedback. Various new delta-sigma analog-to-digital converter topologies are explored their mathematical models are presented. Simulations are carried out to validate these models and to show performance results. Specifically, two topologies, a first-order and a second-order oscillator-based delta-sigma modulator without feedback are described in detail. They both can be implemented utilizing VCOs and standard digital gates, thus requiring only few components. As proof of concept, two digital microphones based on these delta-sigma converters without feedback were implemented and experimental results are given. These results show adequate performance and provide a new approach of measuring

    Time-encoding analog-to-digital converters : bridging the analog gap to advanced digital CMOS? Part 2: architectures and circuits

    Get PDF
    The scaling of CMOS technology deep into the nanometer range has created challenges for the design of highperformance analog ICs: they remain large in area and power consumption in spite of process scaling. Analog circuits based on time encoding [1], [2], where the signal information is encoded in the waveform transitions instead of its amplitude, have been developed to overcome these issues. While part one of this overview article [3] presented the basic principles of time encoding, this follow-up article describes and compares the main time-encoding architectures for analog-to-digital converters (ADCs) and discusses the corresponding design challenges of the circuit blocks. The focus is on structures that avoid, as much as possible, the use of traditional analog blocks like operational amplifiers (opamps) or comparators but instead use digital circuitry, ring oscillators, flip-flops, counters, an so on. Our overview of the state of the art will show that these circuits can achieve excellent performance. The obvious benefit of this highly digital approach to realizing analog functionality is that the resulting circuits are small in area and more compatible with CMOS process scaling. The approach also allows for the easy integration of these analog functions in systems on chip operating at "digital" supply voltages as low as 1V and lower. A large part of the design process can also be embedded in a standard digital synthesis flow

    Interface Circuits for Microsensor Integrated Systems

    Get PDF
    ca. 200 words; this text will present the book in all promotional forms (e.g. flyers). Please describe the book in straightforward and consumer-friendly terms. [Recent advances in sensing technologies, especially those for Microsensor Integrated Systems, have led to several new commercial applications. Among these, low voltage and low power circuit architectures have gained growing attention, being suitable for portable long battery life devices. The aim is to improve the performances of actual interface circuits and systems, both in terms of voltage mode and current mode, in order to overcome the potential problems due to technology scaling and different technology integrations. Related problems, especially those concerning parasitics, lead to a severe interface design attention, especially concerning the analog front-end and novel and smart architecture must be explored and tested, both at simulation and prototype level. Moreover, the growing demand for autonomous systems gets even harder the interface design due to the need of energy-aware cost-effective circuit interfaces integrating, where possible, energy harvesting solutions. The objective of this Special Issue is to explore the potential solutions to overcome actual limitations in sensor interface circuits and systems, especially those for low voltage and low power Microsensor Integrated Systems. The present Special Issue aims to present and highlight the advances and the latest novel and emergent results on this topic, showing best practices, implementations and applications. The Guest Editors invite to submit original research contributions dealing with sensor interfacing related to this specific topic. Additionally, application oriented and review papers are encouraged.
    corecore