281 research outputs found

    Humanoid robot orientation stabilization by shoulder joint motion during locomotion

    Get PDF
    Arm swing action is a natural phenomenon that emerges in biped locomotion. A shoulder torque reference generation method is introduced in this paper to utilize arms of a humanoid robot during locomotion. Main idea of the technique is the employment of shoulder joint actuation torques in order to stabilize body orientation. The reference torques are computed by a method which utilizes proportional and derivative actions. Body orientation angles serve as the inputs of this system. The approach is tested via simulations with the 3D full-dynamics model of the humanoid robot SURALP (Sabanci University Robotics Research Laboratory Platform). Results indicate that the method is successful in reducing oscillations of body angles during bipedal walking

    Humanoid Robot Soccer Locomotion and Kick Dynamics: Open Loop Walking, Kicking and Morphing into Special Motions on the Nao Robot

    Get PDF
    Striker speed and accuracy in the RoboCup (SPL) international robot soccer league is becoming increasingly important as the level of play rises. Competition around the ball is now decided in a matter of seconds. Therefore, eliminating any wasted actions or motions is crucial when attempting to kick the ball. It is common to see a discontinuity between walking and kicking where a robot will return to an initial pose in preparation for the kick action. In this thesis we explore the removal of this behaviour by developing a transition gait that morphs the walk directly into the kick back swing pose. The solution presented here is targeted towards the use of the Aldebaran walk for the Nao robot. The solution we develop involves the design of a central pattern generator to allow for controlled steps with realtime accuracy, and a phase locked loop method to synchronise with the Aldebaran walk so that precise step length control can be activated when required. An open loop trajectory mapping approach is taken to the walk that is stabilized statically through the use of a phase varying joint holding torque technique. We also examine the basic princples of open loop walking, focussing on the commonly overlooked frontal plane motion. The act of kicking itself is explored both analytically and empirically, and solutions are provided that are versatile and powerful. Included as an appendix, the broader matter of striker behaviour (process of goal scoring) is reviewed and we present a velocity control algorithm that is very accurate and efficient in terms of speed of execution

    Desenvolvimento de comportamentos para robĂ´ humanoide

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaHumanoid robotics is an area of active research. Robots with human body are better suited to execute tasks in environments designed for humans. Moreover, people feel more comfortable interacting with robots that have a human appearance. RoboCup encourages robotic research by promoting robotic competitions. One of these competitions is the Standard Platform League (SPL) in which humanoid robots play soccer. The robot used is the Nao robot, created by Aldebaran Robotics. The di erence between the teams that compete in this league is the software that controls the robots. Another league promoted by RoboCup is the 3D Soccer Simulation League (3DSSL). In this league the soccer game is played in a computer simulation. The robot model used is also the one of the Nao robot. However, there are a few di erences in the dimensions and it has one more Degree of Freedom (DoF) than the real robot. Moreover, the simulator cannot reproduce reality with precision. Both these leagues are relevant for this thesis, since they use the same robot model. The objective of this thesis is to develop behaviors for these leagues, taking advantage of the previous work developed for the 3DSSL. These behaviors include the basic movements needed to play soccer, namely: walking, kicking the ball, and getting up after a fall. This thesis presents the architecture of the agent developed for the SPL, which is similar to the architecture of the FC Portugal team agent from the 3DSSL, hence allowing to port code between both leagues easily. It was also developed an interface that allows to control a leg in a more intuitive way. It calculates the joint angles of the leg, using the following parameters: three angles between the torso and the line connecting hip and ankle; two angles between the foot and the perpendicular of the torso; and the distance between the hip and the ankle. It was also developed an algorithm to calculate the three joint angles of the hip that produce the desired vertical rotation, since the Nao robot does not have a vertical joint in the hip. This thesis presents also the behaviors developed for the SPL, some of them based on the existing behaviors from the 3DSSL. It is presented a behavior that allows to create robot movements by de ning a sequence of poses, an open-loop omnidirectional walking algorithm, and a walk optimized in the simulator adapted to the real robot. Feedback was added to this last walk to make it more robust against external disturbances. Using the behaviors presented in this thesis, the robot achieved a forward velocity of 16 cm/s, a lateral velocity of 6 cm/s, and rotated at 40 deg/s. The work developed in this thesis allows to have an agent to control the Nao robot and execute the basic low level behaviors for competing in the SPL. Moreover, the similarities between the architecture of the agent for the SPL with that of the agent from the 3DSSL allow to use the same high level behaviors in both leagues.A robótica humanoide é uma área em ativo desenvolvimento. Os robôs com forma humana estão melhor adaptados para executarem tarefas em ambientes desenhados para humanos. Além disso, as pessoas sentem-se mais confortáveis quando interagem com robôs que tenham aparência humana. O RoboCup incentiva a investigação na área da robótica através da realização de competições de robótica. Uma destas competições é a Standard Platform League (SPL) na qual robôs humanoides jogam futebol. O robô usado é o robô Nao, criado pela Aldebaran Robotics. A diferença entre as equipas que competem nesta liga está no software que controla os robôs. Outra liga presente no RoboCup é a 3D Soccer Simulation League (3DSSL). Nesta liga o jogo de futebol é jogado numa simulação por computador. O modelo de robô usado é também o do robô Nao. Contudo, existem umas pequenas diferenças nas dimensões e este tem mais um grau de liberdade do que o robô real. O simulador também não consegue reproduzir a realidade com perfeição. Ambas estas ligas são importantes para esta dissertação, pois usam o mesmo modelo de robô. O objectivo desta dissertação é desenvolver comportamentos para estas ligas, aproveitando o trabalho prévio desenvolvido para a 3DSSL. Estes comportamentos incluem os movimentos básicos necessários para jogar futebol, nomeadamente: andar, chutar a bola e levantar-se depois de uma queda. Esta dissertação apresenta a arquitetura do agente desenvolvida para a SPL, que é similar á arquitetura do agente da equipa FC Portugal da 3DSSL, para permitir uma mais fácil partilha de código entre as ligas. Foi também desenvolvida uma interface que permite controlar uma perna de maneira mais intuitiva. Ela calcula os ângulos das juntas da perna, usando os seguintes parâmetros: três ângulos entre o torso e a linha que une anca ao tornozelo; dois ângulos entre o pé e a perpendicular do torso; e a distância entre a anca e o tornozelo. Nesta dissertação foi também desenvolvido um algoritmo para calcular os três ângulos das juntas da anca que produzam a desejada rotação vertical, visto o robô Nao não ter uma junta na anca que rode verticalmente. Esta dissertação também apresenta os comportamentos desenvolvidos para a SPL, alguns dos quais foram baseados nos comportamentos já existentes na 3DSSL. É apresentado um modelo de comportamento que permite criar movimentos para o robô de nindo uma sequência de poses, um algoritmo para um andar open-loop e omnidirecional e um andar otimizado no simulador e adaptado para o robô real. A este último andar foi adicionado um sistema de feedback para o tornar mais robusto. Usando os comportamentos apresentados nesta dissertação, o robô atingiu uma velocidade de 16 cm/s para frente, 6 cm/s para o lado e rodou sobre si pr oprio a 40 graus/s. O trabalho desenvolvido nesta dissertação permite ter um agente que controle o robô Nao e execute os comportamentos básicos de baixo nível para competir na SPL. Além disso, as semelhan cas entre a arquitetura do agente para a SPL com a arquitetura do agente da 3DSSL permite usar os mesmos comportamentos de alto nível em ambas as ligas

    Systematic Controller Design for Dynamic 3D Bipedal Robot Walking.

    Full text link
    Virtual constraints and hybrid zero dynamics (HZD) have emerged as a powerful framework for controlling bipedal robot locomotion, as evidenced by the robust, energetically efficient, and natural-looking walking and running gaits achieved by planar robots such as Rabbit, ERNIE, and MABEL. However, the extension to 3D robots is more subtle, as the choice of virtual constraints has a deciding effect on the stability of a periodic orbit. Furthermore, previous methods did not provide a systematic means of designing virtual constraints to ensure stability. This thesis makes both experimental and theoretical contributions to the control of underactuated 3D bipedal robots. On the experimental side, we present the first realization of dynamic 3D walking using virtual constraints. The experimental success is achieved by augmenting a robust planar walking gait with a novel virtual constraint for the lateral swing hip angle. The resulting controller is tested in the laboratory on a human-scale bipedal robot (MARLO) and demonstrated to stabilize the lateral motion for unassisted 3D walking at approximately 1 m/s. MARLO is one of only two known robots to walk in 3D with stilt-like feet. On the theoretical side, we introduce a method to systematically tune a given choice of virtual constraints in order to stabilize a periodic orbit of a hybrid system. We demonstrate the method to stabilize a walking gait for MARLO, and show that the optimized controller leads to improved lateral control compared to the nominal virtual constraints. We also describe several extensions of the basic method, allowing the use of a restricted Poincaré map and the incorporation of disturbance rejection metrics in the optimization. Together, these methods comprise an important contribution to the theory of HZD.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113370/1/bgbuss_1.pd

    New Joint Design to Create a More Natural and Efficient Biped

    Get PDF
    This paper presents a human-oriented approach to design the mechanical architecture and the joint controller for a biped robot. Starting from the analysis of the human lower limbs, we figured out which features of the human legs are fundamental for a correct walking motion, and can be adopted in the mechanical design of a humanoid robot. We focus here on the knee, designed as a compliant human-like knee instead of a classical pin-joint, and on the foot, characterised by the mobility and lightness of the human foot. We implemented an elastic actuator, with a simple position control paradigm that sets the joint stiffness in real time, and developed the basic controller. Results in simulation are discussed. In our approach the robot gains in adaptability and energetic efficiency, which are the most challenging issues for a biped robot

    Push recovery with stepping strategy based on time-projection control

    Get PDF
    In this paper, we present a simple control framework for on-line push recovery with dynamic stepping properties. Due to relatively heavy legs in our robot, we need to take swing dynamics into account and thus use a linear model called 3LP which is composed of three pendulums to simulate swing and torso dynamics. Based on 3LP equations, we formulate discrete LQR controllers and use a particular time-projection method to adjust the next footstep location on-line during the motion continuously. This adjustment, which is found based on both pelvis and swing foot tracking errors, naturally takes the swing dynamics into account. Suggested adjustments are added to the Cartesian 3LP gaits and converted to joint-space trajectories through inverse kinematics. Fixed and adaptive foot lift strategies also ensure enough ground clearance in perturbed walking conditions. The proposed structure is robust, yet uses very simple state estimation and basic position tracking. We rely on the physical series elastic actuators to absorb impacts while introducing simple laws to compensate their tracking bias. Extensive experiments demonstrate the functionality of different control blocks and prove the effectiveness of time-projection in extreme push recovery scenarios. We also show self-produced and emergent walking gaits when the robot is subject to continuous dragging forces. These gaits feature dynamic walking robustness due to relatively soft springs in the ankles and avoiding any Zero Moment Point (ZMP) control in our proposed architecture.Comment: 20 pages journal pape
    • …
    corecore