407 research outputs found

    A 3D segmentation algorithm for ellipsoidal shapes. Application to nuclei extraction.

    Get PDF
    ISBN 978-989-8565-41-9International audienceWe propose some improvements of the Multiple Birth and Cut algorithm (MBC) in order to extract nuclei in 2D and 3D images. This algorithm based on marked point processes was proposed recently in (Gamal Eldin et al., 2012). We introduce a new contrast invariant energy that is robust to degradations encountered in fluorescence microscopy (e.g. local radiometry attenuations). Another contribution of this paper is a fast algorithm to determine whether two ellipses (2D) or ellipsoids (3D) intersect. Finally, we propose a new heuristic that strongly improves the convergence rates. The algorithm alternates between two birth steps. The first one consists in generating objects uniformly at random and the second one consists in perturbing the current configuration locally. Performance of this modified birth step is evaluated and examples on various image types show the wide applicability of the method in the field of bio-imaging

    Automatic segmentation of overlapping cervical smear cells based on local distinctive features and guided shape deformation

    Get PDF
    Automated segmentation of cells from cervical smears poses great challenge to biomedical image analysis because of the noisy and complex background, poor cytoplasmic contrast and the presence of fuzzy and overlapping cells. In this paper, we propose an automated segmentation method for the nucleus and cytoplasm in a cluster of cervical cells based on distinctive local features and guided sparse shape deformation. Our proposed approach is performed in two stages: segmentation of nuclei and cellular clusters, and segmentation of overlapping cytoplasm. In the rst stage, a set of local discriminative shape and appearance cues of image superpixels is incorporated and classi ed by the Support Vector Machine (SVM) to segment the image into nuclei, cellular clusters, and background. In the second stage, a robust shape deformation framework is proposed, based on Sparse Coding (SC) theory and guided by representative shape features, to construct the cytoplasmic shape of each overlapping cell. Then, the obtained shape is re ned by the Distance Regularized Level Set Evolution (DRLSE) model. We evaluated our approach using the ISBI 2014 challenge dataset, which has 135 synthetic cell images for a total of 810 cells. Our results show that our approach outperformed existing approaches in segmenting overlapping cells and obtaining accurate nuclear boundaries. Keywords: overlapping cervical smear cells, feature extraction, sparse coding, shape deformation, distance regularized level set

    Structure tensor based analysis of cells and nuclei organization in tissues

    Get PDF
    International audienceMotivation: Extracting geometrical information from large 2D or 3D biomedical images is important to better understand fundamental phenomena such as morphogenesis. We address the problem of automatically analyzing spatial organization of cells or nuclei in 2D or 3D images of tissues. This problem is challenging due to the usually low quality of microscopy images as well as their typically large sizes. Results: The structure tensor is a simple and robust descriptor that was developed to analyze textures orientation. Contrarily to segmentation methods which rely on an object based modelling of images, the structure tensor views the sample at a macroscopic scale, like a continuum. We propose an original theoretical analysis of this tool and show that it allows quantifying two important features of nuclei in tissues: their privileged orientation as well as the ratio between the length of their main axes. A quantitative evaluation of the method is provided for synthetic and real 2D and 3D images. As an application, we analyze the nuclei orientation and anisotropy on multicellular tumor spheroids cryosections. This analysis reveals that cells are elongated in a privileged direction that is parallel to the boundary of the spheroid. Availability: Source codes are available at http://www.math.univ-toulouse.fr/~weiss

    A generic classification-based method for segmentation of nuclei in 3D images of early embryos

    Get PDF
    BACKGROUND: Studying how individual cells spatially and temporally organize within the embryo is a fundamental issue in modern developmental biology to better understand the first stages of embryogenesis. In order to perform high-throughput analyses in three-dimensional microscopic images, it is essential to be able to automatically segment, classify and track cell nuclei. Many 3D/4D segmentation and tracking algorithms have been reported in the literature. Most of them are specific to particular models or acquisition systems and often require the fine tuning of parameters. RESULTS: We present a new automatic algorithm to segment and simultaneously classify cell nuclei in 3D/4D images. Segmentation relies on training samples that are interactively provided by the user and on an iterative thresholding process. This algorithm can correctly segment nuclei even when they are touching, and remains effective under temporal and spatial intensity variations. The segmentation is coupled to a classification of nuclei according to cell cycle phases, allowing biologists to quantify the effect of genetic perturbations and drug treatments. Robust 3D geometrical shape descriptors are used as training features for classification. Segmentation and classification results of three complete datasets are presented. In our working dataset of the Caenorhabditis elegans embryo, only 21 nuclei out of 3,585 were not detected, the overall F-score for segmentation reached 0.99, and more than 95% of the nuclei were classified in the correct cell cycle phase. No merging of nuclei was found. CONCLUSION: We developed a novel generic algorithm for segmentation and classification in 3D images. The method, referred to as Adaptive Generic Iterative Thresholding Algorithm (AGITA), is freely available as an ImageJ plug-in

    New Methods to Improve Large-Scale Microscopy Image Analysis with Prior Knowledge and Uncertainty

    Get PDF
    Multidimensional imaging techniques provide powerful ways to examine various kinds of scientific questions. The routinely produced data sets in the terabyte-range, however, can hardly be analyzed manually and require an extensive use of automated image analysis. The present work introduces a new concept for the estimation and propagation of uncertainty involved in image analysis operators and new segmentation algorithms that are suitable for terabyte-scale analyses of 3D+t microscopy images

    New Methods to Improve Large-Scale Microscopy Image Analysis with Prior Knowledge and Uncertainty

    Get PDF
    Multidimensional imaging techniques provide powerful ways to examine various kinds of scientific questions. The routinely produced datasets in the terabyte-range, however, can hardly be analyzed manually and require an extensive use of automated image analysis. The present thesis introduces a new concept for the estimation and propagation of uncertainty involved in image analysis operators and new segmentation algorithms that are suitable for terabyte-scale analyses of 3D+t microscopy images.Comment: 218 pages, 58 figures, PhD thesis, Department of Mechanical Engineering, Karlsruhe Institute of Technology, published online with KITopen (License: CC BY-SA 3.0, http://dx.doi.org/10.5445/IR/1000057821

    Fast Segmentation of Stained Nuclei in Terabyte-Scale, Time Resolved 3D Microscopy Image Stacks

    Get PDF
    Automated analysis of multi-dimensional microscopy images has become an integral part of modern research in life science. Most available algorithms that provide sufficient segmentation quality, however, are infeasible for a large amount of data due to their high complexity. In this contribution we present a fast parallelized segmentation method that is especially suited for the extraction of stained nuclei from microscopy images, e.g., of developing zebrafish embryos. The idea is to transform the input image based on gradient and normal directions in the proximity of detected seed points such that it can be handled by straightforward global thresholding like Otsu's method. We evaluate the quality of the obtained segmentation results on a set of real and simulated benchmark images in 2D and 3D and show the algorithm's superior performance compared to other state-of-the-art algorithms. We achieve an up to ten-fold decrease in processing times, allowing us to process large data sets while still providing reasonable segmentation results
    • …
    corecore