4,539 research outputs found

    Imaging in forensic science: Five years on

    Get PDF
    The Journal of Forensic Radiology and Imaging was launched in 2013 with the aim to collate the literature and demonstrate high-quality case studies on image-based modalities across the forensic sciences. Largely, the focus of this journal has been on the transmissive aspect of forensic imaging, and therefore a significant number of high-quality case studies have been published focusing on computed tomography and magnetic resonance imaging. As a result, the ‘and imaging’ aspect is often neglected. Since 2013, technology has fundamentally evolved, and a number of new techniques have become accessible or have been demonstrated as particularly useful within many sub-disciplines of forensic science. These include active and passive surface scanning techniques, and the availability of three-dimensional printing. Therefore, this article discusses non-contact techniques, their applications, advantages, and considerations on the current state of play of imaging in forensic science

    What are the Prospects of 3D Profiling Systems Applied to Firearms and Toolmark Identification?

    Get PDF
    This paper details a comparative pilot study of 3D (three dimensional) imaging technologies for potential application in forensic firearms and toolmark identification; as such it reviews the most up-to-date profiling systems. In particular, the paper focuses on the application of 3D imaging and recording technology as applied to firearm identification, being a specialised field within the discipline of toolmark identification. Each technology under test employs a different technique or scientific principle to capture topographic data i.e. focus-variation microscopy, confocal microscopy, point laser profilometry and vertical scanning interferometry. To qualitatively establish the capabilities and limitations of each technology investigated, standard reference samples were used and a set of specific operational criteria devised for successful application in this field. The reference standard crucially included and centred on was the National Institute of Standards and Technology (NIST) 'standard bullet'. This was to ensure that evaluation represented the practical examination of ballistic samples i.e. fired cartridge cases and bullets. It is concluded that focus-variation microscopy has potentially the most promising approach for a forensic laboratory instrument, in terms of functionality and 3D imaging performance, and is worthy of further investigation

    Documentation and analysis of plastic fingerprint impressions involving contactless three-dimensional surface scanning

    Get PDF
    Fingerprint impressions are frequently encountered during the investigation of crime scenes, and may establish a crucial linkage between the suspect and the crime scene. Plastic fingerprint impressions found at crime scenes are often transient and delicate, leaving photography the sole means of documentation. A traditional photography approach can be inadequate in documenting impressions that contain three-dimensional (3D) details due to the limitations of camera and lighting conditions on scene. In this study, 3D scanning was proposed as a novel method for the documentation of plastic fingerprints. Structured-light 3D scanning (SLS) captures the distortion of projected light patterns on the subject to obtain its 3D profile, which allows fast acquisition of the complete 3D geometric information of the surface. The contactless operation of SLS also eliminates the risk of destroying fragile evidence, making it a sound choice for forensic applications. In this study, the feasibility of 3D scanning of plastic fingerprint impressions was evaluated and compared with traditional photography regarding the quantity and quality of perceptible friction ridge features. Attempts were made to develop a procedure to extract curvature features from 3D scanned fingerprints and flatten the friction ridge features into two-dimensional (2D) images to allow direct comparison with the traditional photography method in the CSIpixÂź Matcher and NFIQ 2.0 software. One of the developed methods (3DR) utilizing a discrete geometry operator and convexity features outperformed traditional photography, both in minutiae count and match quality, while traditional photography could not always capture enough high-quality minutiae for comparisons, even after digital enhancement. The reproducibility of the 3D scanning process was evaluated using 3D point cloud statistics. The pair-wise mean distance and standard deviation were calculated for four levels of comparisons with theoretically increasing disparity, including pairs of scans of the same impressions. The results showed minimal shape deviation from scan to scan for the same impression, but high variations for different impressions

    3D imaging in forensic odontology

    Get PDF

    An overview of 3D printing in forensic science: the tangible third-dimension

    Get PDF
    There has been a rapid development and utilization of three‐dimensional (3D) printing technologies in engineering, health care, and dentistry. Like many technologies in overlapping disciplines, these techniques have proved to be useful and hence incorporated into the forensic sciences. Therefore, this paper describes how the potential of using 3D printing is being recognized within the various sub‐disciplines of forensic science and suggests areas for future applications. For instance, the application can create a permanent record of an object or scene that can be used as demonstrative evidence, preserving the integrity of the actual object or scene. Likewise, 3D printing can help with the visualization of evidential spatial relationships within a scene and increase the understanding of complex terminology within a courtroom. However, while the application of 3D printing to forensic science is beneficial, currently there is limited research demonstrated in the literature and a lack of reporting skewing the visibility of the applications. Therefore, this article highlights the need to create good practice for 3D printing across the forensic science process, the need to develop accurate and admissible 3D printed models while exploring the techniques, accuracy and bias within the courtroom, and calls for the alignment of future research and agendas perhaps in the form of a specialist working group

    Three-dimensional(3D) printing in forensic science–An emerging technology in India

    Get PDF
    Three-dimensional(3D) scanning and printing technologies has proved to be a boon and revolutionized Indian society in recent years. 3D printing is slowly gaining popularity in the fields of forensics due to its capability to provide information in all three axis (x, y and z) when compared to 2D photographs.The technology is actively being used in the fields of forensic medicine, anthropology, ballistics and odontology.3D printing allows better visualisation, interpretation, preservation and analysis of the evidence. The present article highlights the applications of 3D printing and presents current needs to develop and incorporate 3D printing technology in Indian forensics

    An exploratory study toward the contribution of 3D surface scanning for association of an injury with its causing instrument.

    Get PDF
    3D surface scanning is a technique brought forward for wound documentation and analysis in order to identify injury-causing tools in legal medicine and forensic science. Although many case reports have been published, little is known about the methodology employed by the authors. The study reported here is exploratory in nature, and its main purpose was to get a first evaluation of the ability of an operator, by means of 3D surface scanning and following a simple methodology, to correctly exclude or associate an incriminated tool as the source of a mock wound. Based on these results, an assessment of the possibility to define a structured methodology that could be suitable for this use was proposed. Blunt tools were used to produce 'wounds' on watermelons. Both wounds and tools were scanned with a non-contact optical surface 3D digitising system. Analysis of the obtained 3D models of wounds and tools was undertaken separately. This analytical phase was followed by a qualitative and a quantitative comparison. Results showed that in more than half of the cases, we obtained a correct association but the prevalence of wrong association was still high due to mark deformation and other limitations. Even if the findings of this exploratory study cannot be generalised, they suggest that the simple and direct comparison process is not reliable enough for a systematic routine application. The article highlights the importance of an analysis phase preceding the comparison step. Limitations of the technique, ensuring needs and possible paths for improvement are also expounded

    Assessing Forensic Ballistics Three-Dimensionally through Graphical Reconstruction and Immersive VR Observation

    Get PDF
    © The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.A crime scene can provide valuable evidence critical to explain reason and modality of the occurred crime, and it can also lead to the arrest of criminals. The type of evidence collected by crime scene investigators or by law enforcement may accordingly effective involved cases. Bullets and cartridge cases examination is of paramount importance in forensic science because they may contain traces of microscopic striations, impressions and markings, which are unique and reproducible as “ballistic fingerprints”. The analysis of bullets and cartridge cases is a complicated and challenging process, typically based on optical comparison, leading to the identification of the employed firearm. New methods have recently been proposed for more accurate comparisons, which rely on three-dimensionally reconstructed data. This paper aims at further advancing recent methods by introducing a novel immersive technique for ballistics comparison by means of Virtual Reality. Users can three-dimensionally examine the cartridge cases shapes through intuitive natural gestures, from any vantage viewpoint (including internal iper-magnified views), while having at their disposal sets of visual aids which could not be easily implemented in desktop-based applications. A user study was conducted to assess viability and performance of our solution, which involved fourteen individuals acquainted with the standard procedures used by law enforcement agencies. Results clearly indicated that our approach lead to faster adaptation of users to the UI/UX and more accurate and explainable ballistics examination results.Peer reviewe
    • 

    corecore