205 research outputs found

    Dynamic Gaits and Control in Flexible Body Quadruped Robot

    Get PDF
    Legged robots are highly attractive for military purposes such as carrying heavy loads on uneven terrain for long durations because of the higher mobility they give on rough terrain compared to wheeled vehicles/robots. Existing state-of-the-art quadruped robots developed by Boston Dynamics such as LittleDog and BigDog do not have flexible bodies. It can be easily seen that the agility of quadruped animals such as dogs, cats, and deer etc. depend to a large extent on their ability to flex their bodies. However, simulation study on step climbing in 3D terrain quadruped robot locomotion with flexible body has not been reported in literature. This paper aims to study the effect of body flexibility on stability and energy efficiency in walking mode, trot mode and running (bounding) mode on step climbing

    Master of Science

    Get PDF
    thesisThis research studies the passive dynamics of an under-actuated trotting quadruped. The goal of this project is to perform three-dimensional (3D) dynamic simulations of a trotting quadruped robot to find proper leg configurations and stiffness range, in order to achieve stable trotting gait. First, a 3D simulation framework that includes all the six degrees of freedom of the body is introduced. Directionally compliant legs together with different leg configurations are employed to achieve passive stability. Compliant legs passively support the body during stance phase and during flight phase a motor is used to retract the legs. Leg configurations in the robot's sagittal and frontal plane are introduced. Numerical experiments are conducted to search the design space of the leg, focusing on increasing the passive stability of the robot. Increased stability is defined as decreased pitching, rolling, and yawing motion of the robot. The results indicate that optimized leg parameters can guarantee passive stable trotting with reduced roll, pitch, and yaw. Studies suggest that a quadruped robot with compliant legs is dynamically stable while trotting. Results indicate that the robot based on a biological model (i.e., caudal inclination of humeri and cranial inclination of femora) has the best performance. Stiff springs at hips and shoulders, soft spring at knees and elbows, and stiff springs at ankles and wrists are recommended. The results of this project provide a conceptual framework for understanding the movements of a trotting quadruped

    System design of a quadrupedal galloping machine

    Full text link
    In this paper we present the system design of a machine that we have constructed to study a quadrupedal gallop gait. The gallop gait is the preferred high-speed gait of most cursorial quadrupeds. To gallop, an animal must generate ballistic trajectories with characteristic strong impacts, coordinate leg movements with asymmetric footfall phasing, and effectively use compliant members, all the while maintaining dynamic stability. In this paper we seek to further understand the primary biological features necessary for galloping by building and testing a robotic quadruped similar in size to a large goat or antelope. These features include high-speed actuation, energy storage, on-line learning control, and high-performance attitude sensing. Because body dynamics are primarily influenced by the impulses delivered by the legs, the successful design and control of single leg energetics is a major focus of this work. The leg stores energy during flight by adding tension to a spring acting across an articulated knee. During stance, the spring energy is quickly released using a novel capstan design. As a precursor to quadruped control, two intelligent strategies have been developed for verification on a one-legged system. The Levenberg-Marquardt on-line learning method is applied to a simple heuristic controller and provides good control over height and forward velocity. Direct adaptive fuzzy control, which requires no system modeling but is more computationally expensive, exhibits better response. Using these techniques we have been successful in operating one leg at speeds necessary for a dynamic gallop of a machine of this scale. Another necessary component of quadruped locomotion is high-resolution and high-bandwidth attitude sensing. The large ground impact accelerations, which cause problems for any single traditional sensor, are overcome through the use of an inertial sensing approach using updates from optical sensors and vehicle kinematics

    Influence of Compliant Joints in Four-Legged Robots

    Get PDF
    Legged animals are capable of rapid movements, are efficient from the energy point of view, and are able to adapt their gaits to environmental conditions. Motions like walking, trotting, galloping, and jumping, are difficult to evaluate and replicate due to their being consequences of complex interactions of different systems (such as the musculoskeletal system and the central and peripheral nervous systems, including also the influence of the environment). In this paper, we analyzed the behavior of a four-legged robot constituted by one active DOF in each leg (using commercial servomotors) and one passive DOF in each knee and in the spine (using springs). Our objective was to increase the motion performances of the robot by varying the stiffness of the springs. The results obtained from the simulation underline how the stiffness of the spine influences the performance of the robot by increasing the speed and reducing the energy required by the servomotors

    Robust High-speed Running for Quadruped Robots via Deep Reinforcement Learning

    Full text link
    Deep reinforcement learning has emerged as a popular and powerful way to develop locomotion controllers for quadruped robots. Common approaches have largely focused on learning actions directly in joint space, or learning to modify and offset foot positions produced by trajectory generators. Both approaches typically require careful reward shaping and training for millions of time steps, and with trajectory generators introduce human bias into the resulting control policies. In this paper, we instead explore learning foot positions in Cartesian space, which we track with impedance control, for a task of running as fast as possible subject to environmental disturbances. Compared with other action spaces, we observe less needed reward shaping, much improved sample efficiency, the emergence of natural gaits such as galloping and bounding, and ease of sim-to-sim transfer. Policies can be learned in only a few million time steps, even for challenging tasks of running over rough terrain with loads of over 100% of the nominal quadruped mass. Training occurs in PyBullet, and we perform a sim-to-sim transfer to Gazebo, where our quadruped is able to run at over 4 m/s without a load, and 3.5 m/s with a 10 kg load, which is over 83% of the nominal quadruped mass. Video results can be found at https://youtu.be/roE1vxpEWfw.Comment: arXiv admin note: text overlap with arXiv:2011.0708

    Identifying important sensory feedback for learning locomotion skills

    Get PDF
    Robot motor skills can be acquired by deep reinforcement learning as neural networks to reflect state–action mapping. The selection of states has been demonstrated to be crucial for successful robot motor learning. However, because of the complexity of neural networks, human insights and engineering efforts are often required to select appropriate states through qualitative approaches, such as ablation studies, without a quantitative analysis of the state importance. Here we present a systematic saliency analysis that quantitatively evaluates the relative importance of different feedback states for motor skills learned through deep reinforcement learning. Our approach provides a guideline to identify the most essential feedback states for robot motor learning. By using only the important states including joint positions, gravity vector and base linear and angular velocities, we demonstrate that a simulated quadruped robot can learn various robust locomotion skills. We find that locomotion skills learned only with important states can achieve task performance comparable to the performance of those with more states. This work provides quantitative insights into the impacts of state observations on specific types of motor skills, enabling the learning of a wide range of motor skills with minimal sensing dependencies.</p

    Automatic Gait Pattern Selection for Legged Robots

    Get PDF
    An important issue when synthesizing legged locomotion plans is the combinatorial complexity that arises from gait pattern selection. Though it can be defined manually, the gait pattern plays an important role in the feasibility and optimality of a motion with respect to a task. Replacing human intuition with an automatic and efficient approach for gait pattern selection would allow for more autonomous robots, responsive to task and environment changes. To this end, we propose the idea of building a map from task to gait pattern selection for given environment and performance objective. Indeed, we show that for a 2D half-cheetah model and a quadruped robot, a direct mapping between a given task and an optimal gait pattern can be established. We use supervised learning to capture the structure of this map in a form of gait regions. Furthermore, we propose to construct a warm-starting trajectory for each gait region. We empirically show that these warm-starting trajectories improve the convergence speed of our trajectory optimization problem up to 60 times when compared with random initial guesses. Finally, we conduct experimental trials on the ANYmal robot to validate our method.</p
    corecore