63 research outputs found

    Nonstandard Finite Element Methods

    Get PDF
    [no abstract available

    Discretizations and Solvers for Coupling Stokes-Darcy Flows With Transport

    Get PDF
    This thesis studies a mathematical model, in which Stokes-Darcy flow system is coupled with a transport equation. The objective is to develop stable and convergent numerical schemes that could be used in environmental applications. Special attention is given to discretization methods that conserve mass locally. First, we present a global saddle point problem approach, which employs the discontinuous Galerkin method to discretize the Stokes equations and the mimetic finite difference method to discretize the Darcy equation. We show how the numerical scheme can be formulated on general polygonal (polyhedral in three dimensions) meshes if suitable operators mapping from degrees of freedom to functional spaces are constructed. The scheme is analyzed and error estimates are derived. A hybridization technique is used to solve the system effectively. We ran several numerical experiments to verify the theoretical convergence rates and depending on the mesh type we observed superconvergence of the computed solution in the Darcy region.Another approach that we use to deal with the flow equations is based on non-overlapping domain decomposition. Domain decomposition enables us to solve the coupled Stokes-Darcy flow problem in parallel by partitioning the computational domain into subdomains, upon which families of coupled local problems of lower complexity are formulated. The coupling of the subdomain problems is removed through an iterative procedure. We investigate the properties of this method and derive estimates for the condition number of the associated algebraic system. Results from computer tests supporting the convergence analysis of the method are provided. To discretize the transport equation we use the local discontinuous Galerkin (LDG) method, which can be thought as a discontinuous mixed finite element method, since it approximates both the concentration and the diffusive flux. We develop stability and convergence analysis for the concentration and the diffusive flux in the transport equation. The numerical error is a combination of the LDG discretization error and the error from the discretization of the Stokes-Darcy velocity. Several examples verifying the theory and illustrating the capabilities of the method are presented

    Hybrid coupling of CG and HDG discretizations based on Nitsche’s method

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Computational mechanics. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00466-019-01770-8A strategy to couple continuous Galerkin (CG) and hybridizable discontinuous Galerkin (HDG) discretizations based only on the HDG hybrid variable is presented for linear thermal and elastic problems. The hybrid CG-HDG coupling exploits the definition of the numerical flux and the trace of the solution on the mesh faces to impose the transmission conditions between the CG and HDG subdomains. The con- tinuity of the solution is imposed in the CG problem via Nitsche’s method, whereas the equilibrium of the flux at the interface is naturally enforced as a Neumann con- dition in the HDG global problem. The proposed strategy does not affect the core structure of CG and HDG discretizations. In fact, the resulting formulation leads to a minimally-intrusive coupling, suitable to be integrated in existing CG and HDG libraries. Numerical experiments in two and three dimensions show optimal global convergence of the stress and superconvergence of the displacement field, locking-free approximation, as well as the potential to treat structural problems of engineering interest featuring multiple materials with compressible and nearly incompressible behaviors.Peer ReviewedPostprint (author's final draft

    Numerical Computations with H(div)-Finite Elements for the Brinkman Problem

    Full text link
    The H(div)-conforming approach for the Brinkman equation is studied numerically, verifying the theoretical a priori and a posteriori analysis in previous work of the authors. Furthermore, the results are extended to cover a non-constant permeability. A hybridization technique for the problem is presented, complete with a convergence analysis and numerical verification. Finally, the numerical convergence studies are complemented with numerical examples of applications to domain decomposition and adaptive mesh refinement.Comment: Minor clarifications, added references. Reordering of some figures. To appear in Computational Geosciences, final article available at http://www.springerlink.co

    Computational Engineering

    Get PDF
    The focus of this Computational Engineering Workshop was on the mathematical foundation of state-of-the-art and emerging finite element methods in engineering analysis. The 52 participants included mathematicians and engineers with shared interest on discontinuous Galerkin or Petrov-Galerkin methods and other generalized nonconforming or mixed finite element methods
    • …
    corecore