156 research outputs found

    Automatic correction of Ma and Sonka's thinning algorithm using P-simple points

    Get PDF
    International audienceMa and Sonka proposed a fully parallel 3D thinning algorithm which does not always preserve topology. We propose an algorithm based on P-simple points which automatically corrects Ma and Sonka's Algorithm. As far as we know, our algorithm is the only fully parallel curve thinning algorithm which preserves topology

    Improved 3D thinning algorithms for skeleton extraction

    Full text link
    In this study, we focused on developing a novel 3D Thinning algorithm to extract one-voxel wide skeleton from various 3D objects aiming at preserving the topological information. The 3D Thinning algorithm was testified on computer-generated and real 3D reconstructed image sets acquired from TEMT and compared with other existing 3D Thinning algorithms. It is found that the algorithm has conserved medial axes and simultaneously topologies very well, demonstrating many advantages over the existing technologies. They are versatile, rigorous, efficient and rotation invariant.<br /

    A 3D parallel shrinking algorithm

    Get PDF
    Shrinking is a frequently used preprocessing step in image processing. This paper presents an efficient 3D parallel shrinking algorithm for transforming a binary object into its topological kernel. The applied strategy is called directional: each iteration step is composed of six subiterations each of which can be executed in parallel. The algorithm makes easy implementation possible, since deletable points are given by 3 x 3 x 3 matching templates. The topological correctness of the algorithm is proved for (26,6) binary pictures

    2D parallel thinning and shrinking based on sufficient conditions for topology preservation

    Get PDF
    Thinning and shrinking algorithms, respectively, are capable of extracting medial lines and topological kernels from digital binary objects in a topology preserving way. These topological algorithms are composed of reduction operations: object points that satisfy some topological and geometrical constraints are removed until stability is reached. In this work we present some new sufficient conditions for topology preserving parallel reductions and fiftyfour new 2D parallel thinning and shrinking algorithms that are based on our conditions. The proposed thinning algorithms use five characterizations of endpoints

    An automatic correction of Ma's thinning algorithm based on P -simple points

    Get PDF
    International audienceThe notion of P -simple points has been introduced by Bertrand to conceive parallel thinning algorithms. In 'A 3D fully parallel thinning algorithm for generating medial faces', Ma has proposed an algorithm for which there exists objects whose topology is not preserved. In this paper, we propose a new application of P -simple points: to automatically correct Ma's algorithm

    A 3D Sequential Thinning Scheme Based on Critical Kernels

    Get PDF
    International audienceWe propose a new generic sequential thinning scheme based on the critical kernels framework. From this scheme, we derive sequential algorithms for obtaining ultimate skeletons and curve skeletons. We prove some properties of these algorithms, and we provide the results of a quantitative evaluation that compares our algorithm for curve skeletons with both sequential and parallel ones
    • …
    corecore