115 research outputs found

    Low-pass CMOS Sigma-Delta Converter

    Get PDF
    A crescente necessidade em dar-se uma melhor saúde à população obriga ao desenvolvimento de novos e melhores dispositivos médicos. Atualmente, uma área de desenvolvimento importante é a de dispositivos portáteis para análise de sinais biológicos, tais como o eletrocardiograma ou o electroencefalograma, ajudando os profissionais de saúde a fazer rápidos diagnósticos no terreno, ou mesmo para serem usados por cidadãos que necessitem de vigilância constante. O desenvolvimento destes aparelhos traz novos desafios para a comunidade cientifica, nomeadamente na interface analógico/digital, na qualidade dos dados obtidos e no gasto energético. Para se conceber um bom dispositivos médico é necessário um conversor analógico/digital para frequências baixas, com baixo consumo energético e elevada resolução. Esta dissertação começa por fornecer ao leitor a teoria básica sobre conversores analógico/digital (ADC) e estado de arte. Como principal objetivo do trabalho desenvolvido, é descrito o desenho de um ADC baseado numa arquitetura Sigma-Delta que vá de encontro aos requisitos mencionados. O conversor foi implementado numa tecnologia 130 nm CMOS, usando uma frequência de amostragem de 1 MHz, com uma largura de banda de 1 kHz e tensão de alimentação 1,2 V. É usada, nos integradores do sigma-delta, uma invulgar tipologia de Opamp de forma a obter um ganho elevado, sem recurso a técnicas cascode. O quantizador possui uma resolução de 1,5 bits e é realizado com dois comparadores dinâmicos, de forma a minimizar o consumo energético.The growing need to provide better health for the population requires the development of new and better medical devices. Portable devices for the analysis of biological signals, such as the electrocardiogram or electroencephalogram, is nowadays an important development, helping health professionals to come up with fast diagnoses on the field, or even for use by citizens who require constant vigilance . Developing these devices brings new challenges to the scientific community, namely at the analog/digital interface, the quality of data and power consumption. In order to design a good medical device it is necessary an analog/digital converter for low frequencies, with low power consumption and high resolution. This dissertation begins by providing the reader with the basic theory of analog/digital (ADC) and its state of the art. The main goal of the work is the design of an ADC based on a Sigma-Delta architecture that meets the necessary medical requirements. The converter was implemented in a 130 nm CMOS technology using a sampling frequency of 1 MHz, with a bandwidth of 1 kHz, and a source voltage of 1.2 V. The integrators of sigma-delta employs an unusual Opamp typology in order to reach a high gain, without resourcing to cascode techniques. The quantizer has a resolution of 1.5 bits and is realized with two dynamic comparators, in order to minimize power consumption

    Energy Efficient Techniques For Algorithmic Analog-To-Digital Converters

    Get PDF
    Analog-to-digital converters (ADCs) are key design blocks in state-of-art image, capacitive, and biomedical sensing applications. In these sensing applications, algorithmic ADCs are the preferred choice due to their high resolution and low area advantages. Algorithmic ADCs are based on the same operating principle as that of pipelined ADCs. Unlike pipelined ADCs where the residue is transferred to the next stage, an N-bit algorithmic ADC utilizes the same hardware N-times for each bit of resolution. Due to the cyclic nature of algorithmic ADCs, many of the low power techniques applicable to pipelined ADCs cannot be directly applied to algorithmic ADCs. Consequently, compared to those of pipelined ADCs, the traditional implementations of algorithmic ADCs are power inefficient. This thesis presents two novel energy efficient techniques for algorithmic ADCs. The first technique modifies the capacitors' arrangement of a conventional flip-around configuration and amplifier sharing technique, resulting in a low power and low area design solution. The other technique is based on the unit multiplying-digital-to-analog-converter approach. The proposed approach exploits the power saving advantages of capacitor-shared technique and capacitor-scaled technique. It is shown that, compared to conventional techniques, the proposed techniques reduce the power consumption of algorithmic ADCs by more than 85\%. To verify the effectiveness of such approaches, two prototype chips, a 10-bit 5 MS/s and a 12-bit 10 MS/s ADCs, are implemented in a 130-nm CMOS process. Detailed design considerations are discussed as well as the simulation and measurement results. According to the simulation results, both designs achieve figures-of-merit of approximately 60 fJ/step, making them some of the most power efficient ADCs to date

    Energy Efficient Techniques For Algorithmic Analog-To-Digital Converters

    Get PDF
    Analog-to-digital converters (ADCs) are key design blocks in state-of-art image, capacitive, and biomedical sensing applications. In these sensing applications, algorithmic ADCs are the preferred choice due to their high resolution and low area advantages. Algorithmic ADCs are based on the same operating principle as that of pipelined ADCs. Unlike pipelined ADCs where the residue is transferred to the next stage, an N-bit algorithmic ADC utilizes the same hardware N-times for each bit of resolution. Due to the cyclic nature of algorithmic ADCs, many of the low power techniques applicable to pipelined ADCs cannot be directly applied to algorithmic ADCs. Consequently, compared to those of pipelined ADCs, the traditional implementations of algorithmic ADCs are power inefficient. This thesis presents two novel energy efficient techniques for algorithmic ADCs. The first technique modifies the capacitors' arrangement of a conventional flip-around configuration and amplifier sharing technique, resulting in a low power and low area design solution. The other technique is based on the unit multiplying-digital-to-analog-converter approach. The proposed approach exploits the power saving advantages of capacitor-shared technique and capacitor-scaled technique. It is shown that, compared to conventional techniques, the proposed techniques reduce the power consumption of algorithmic ADCs by more than 85\%. To verify the effectiveness of such approaches, two prototype chips, a 10-bit 5 MS/s and a 12-bit 10 MS/s ADCs, are implemented in a 130-nm CMOS process. Detailed design considerations are discussed as well as the simulation and measurement results. According to the simulation results, both designs achieve figures-of-merit of approximately 60 fJ/step, making them some of the most power efficient ADCs to date

    All Digital, Background Calibration for Time-Interleaved and Successive Approximation Register Analog-to-Digital Converters

    Get PDF
    The growth of digital systems underscores the need to convert analog information to the digital domain at high speeds and with great accuracy. Analog-to-Digital Converter (ADC) calibration is often a limiting factor, requiring longer calibration times to achieve higher accuracy. The goal of this dissertation is to perform a fully digital background calibration using an arbitrary input signal for A/D converters. The work presented here adapts the cyclic Split-ADC calibration method to the time interleaved (TI) and successive approximation register (SAR) architectures. The TI architecture has three types of linear mismatch errors: offset, gain and aperture time delay. By correcting all three mismatch errors in the digital domain, each converter is capable of operating at the fastest speed allowed by the process technology. The total number of correction parameters required for calibration is dependent on the interleaving ratio, M. To adapt the Split-ADC method to a TI system, 2M+1 half-sized converters are required to estimate 3(2M+1) correction parameters. This thesis presents a 4:1 Split-TI converter that achieves full convergence in less than 400,000 samples. The SAR architecture employs a binary weight capacitor array to convert analog inputs into digital output codes. Mismatch in the capacitor weights results in non-linear distortion error. By adding redundant bits and dividing the array into individual unit capacitors, the Split-SAR method can estimate the mismatch and correct the digital output code. The results from this work show a reduction in the non-linear distortion with the ability to converge in less than 750,000 samples

    Architectural Alternatives to Implement High-Performance Delta-Sigma Modulators

    Get PDF
    RÉSUMÉ Le besoin d’appareils portatifs, de téléphones intelligents et de systèmes microélectroniques implantables médicaux s’accroît remarquablement. Cependant, l’optimisation de l’alimentation de tous ces appareils électroniques portables est l’un des principaux défis en raison du manque de piles à grande capacité utilisées pour les alimenter. C’est un fait bien établi que le convertisseur analogique-numérique (CAN) est l’un des blocs les plus critiques de ces appareils et qu’il doit convertir efficacement les signaux analogiques au monde numérique pour effectuer un post-traitement tel que l’extraction de caractéristiques. Parmi les différents types de CAN, les modulateurs Delta Sigma (��M) ont été utilisés dans ces appareils en raison des fonctionnalités alléchantes qu’ils offrent. En raison du suréchantillonnage et pour éloigner le bruit de la bande d’intérêt, un CAN haute résolution peut être obtenu avec les architectures ��. Il offre également un compromis entre la fréquence d’échantillonnage et la résolution, tout en offrant une architecture programmable pour réaliser un CAN flexible. Ces CAN peuvent être implémentés avec des blocs analogiques de faible précision. De plus, ils peuvent être efficacement optimisés au niveau de l’architecture et circuits correspondants. Cette dernière caractéristique a été une motivation pour proposer différentes architectures au fil des ans. Cette thèse contribue à ce sujet en explorant de nouvelles architectures pour optimiser la structure ��M en termes de résolution, de consommation d’énergie et de surface de silicium. Des soucis particuliers doivent également être pris en compte pour faciliter la mise en œuvre du ��M. D’autre part, les nouveaux procédés CMOS de conception et fabrication apportent des améliorations remarquables en termes de vitesse, de taille et de consommation d’énergie lors de la mise en œuvre de circuits numériques. Une telle mise à l’échelle agressive des procédés, rend la conception de blocs analogiques tel que un amplificateur de transconductance opérationnel (OTA), difficile. Par conséquent, des soins spéciaux sont également pris en compte dans cette thèse pour surmonter les problèmes énumérés. Ayant mentionné ci-dessus que cette thèse est principalement composée de deux parties principales. La première concerne les nouvelles architectures implémentées en mode de tension et la seconde partie contient une nouvelle architecture réalisée en mode hybride tension et temps.----------ABSTRACT The need for hand-held devices, smart-phones and medical implantable microelectronic sys-tems, is remarkably growing up. However, keeping all these electronic devices power optimized is one of the main challenges due to the lack of long life-time batteries utilized to power them up. It is a well-established fact that analog-to-digital converter (ADC) is one of the most critical building blocks of such devices and it needs to efficiently convert analog signals to the digital world to perform post processing such as channelizing, feature extraction, etc. Among various type of ADCs, Delta Sigma Modulators (��Ms) have been widely used in those devices due to the tempting features they offer. In fact, due to oversampling and noise-shaping technique a high-resolution ADC can be achieved with �� architectures. It also offers a compromise between sampling frequency and resolution while providing a highly-programmable approach to realize an ADC. Moreover, such ADCs can be implemented with low-precision analog blocks. Last but not the least, they are capable of being effectively power optimized at both architectural and circuit levels. The latter has been a motivation to proposed different architectures over the years.This thesis contributes to this topic by exploring new architectures to effectively optimize the ��M structure in terms of resolution, power consumption and chip area. Special cares must also be taken into account to ease the implementation of the ��M. On the other hand, advanced node CMOS processes bring remarkable improvements in terms of speed, size and power consumption while implementing digital circuits. Such an aggressive process scaling, however, make the design of analog blocks, e.g. operational transconductance amplifiers (OTAs), cumbersome. Therefore, special cares are also taken into account in this thesis to overcome the mentioned issues. Having had above mentioned discussion, this thesis is mainly split in two main categories. First category addresses new architectures implemented in a pure voltage domain and the second category contains new architecture realized in a hybrid voltage and time domain. In doing so, the thesis first focuses on a switched-capacitor implementation of a ��M while presenting an architectural solution to overcome the limitations of the previous approaches. This limitations include a power hungry adder in a conventional feed-forward topology as well as power hungry OTAs

    Design, analysis and optimization of a dynamically reconfi gurable regenerative comparator for ultra-low power 6-bit TC-ADCs in 90nm CMOS technology

    Get PDF
    In this work the threshold configurable regenerative comparator on which TC-ADCs are based is optimized to further reduce the power consumption for use in battery-less biomedical sensor applications.\nMoreover, the effect of device mismatches on the offset, gain and linearity errors of the ADC is analyzed by means of Monte Carlo simulations.\nThis optimized comparator reduces the power consumption from 13uW to 3uW, while maintaining the same full scale rang

    Design and Implementation of a Novel Flash ADC for Ultra Wide Band Applications

    Get PDF
    This dissertation presents a design and implementation of a novel flash ADC architecture for ultra wide band applications. The advancement in wireless technology takes us in to a world without wires. Most of the wireless communication systems use digital signal processing to transmit as well as receive the information. The real world signals are analog. Due to the processing complexity of the analog signal, it is converted to digital form so that processing becomes easier. The development in the digital signal processor field is rapid due to the advancement in the integrated circuit technology over the last decade. Therefore, analog-to -digital converter acts as an interface in between analog signal and digital signal processing systems. The continuous speed enhancement of the wireless communication systems brings out huge demands in speed and power specifications of high-speed low-resolution analog-to -digital converters. Even though wired technology is a primary mode of communication, the quality and efficiency of the wireless technology allows us to apply to biomedical applications, in home services and even to radar applications. These applications are highly relying on wireless technology to send and receive information at high speed with great accuracy. Ultra Wideband (UWB) technology is the best method to these applications. A UWB signal has a bandwidth of minimum 500MHz or a fractional bandwidth of 25 percentage of its centre frequency. The two different technology standards that are used in UWB are multiband orthogonal frequency division multiplexing ultra wideband technology (MB-OFDM) and carrier free direct sequence ultra wideband technology (DS-UWB). ADC is the core of any UWB receiver. Generally a high speed flash ADC is used in DS-UWB receiver. Two different flash ADC architectures are proposed in this thesis for DS-UWB applications. The first design is a high speed five bit flash ADC architecture with a sampling rate of 5 GS/s. The design is verified using CADENCE tool with CMOS 90 nm technology. The total power dissipation of the ADC is 8.381 mW from power supply of 1.2 V. The die area of the proposed flash ADC is 186 μm × 210 μm (0.039 mm2). The proposed flash ADC is analysed and compared with other papers in the literature having same resolution and it is concluded that it has the highest speed of operation with medium power dissipation. iii The second design is a reconfigurable five bit flash ADC architecture with a sampling rate of 1.25 GS/s. The design is verified using CADENCE tool with UMC 180 nm technology. The total power dissipation of the ADC is 11.71 mW from power supply of 1.8 V. The die area of the implementation is 432 μm × 720 μm (0.31104 mm2). The chip tape out of the proposed reconfigurable flash ADC is made for fabrication
    corecore