62 research outputs found

    Power Electronics Applications in Renewable Energy Systems

    Get PDF
    The renewable generation system is currently experiencing rapid growth in various power grids. The stability and dynamic response issues of power grids are receiving attention due to the increase in power electronics-based renewable energy. The main focus of this Special Issue is to provide solutions for power system planning and operation. Power electronics-based devices can offer new ancillary services to several industrial sectors. In order to fully include the capability of power conversion systems in the network integration of renewable generators, several studies should be carried out, including detailed studies of switching circuits, and comprehensive operating strategies for numerous devices, consisting of large-scale renewable generation clusters

    Evaluation of two prototype three phase photovoltaic water pumping systems

    Get PDF
    Bibliography: p. 221-223.Two prototype three phase AC photovoltaic pump systems (Solvo, ML T) and a DC PV pump (Miltek) were tested on a farm borehole in Namibia (latitude 21°6', longitude 17°6'). The PV array consisted of twelve modules (636Wpeak) mounted on a single-axis passive tracker. The depth of the water was 75m and a progressive cavity pump with a self-compensating stator was used in all the tests. Customised data acquisition was designed to measure performance characteristics through a range of operating conditions (mainly steady state); a secondary data acquisition system was used to capture samples of high frequency signals. The data allowed detailed analysis of system, subsystem and component performance, as well as performance evaluation over Standard Solar Days. The focus of the investigation was evaluation of the AC prototypes, in terms of performance, other technical factors, reliability and economic criteria. The analog-based DC system served as a basis for comparison. Both AC systems employed microprocessor control and PWM variable-frequency variable-voltage inversion. Efficiencies, optimality, stability, start-up behaviour, non-productive operating modes and protection were examined. A number of recommendations were proposed for improvements in the basic control algorithms, monitoring and managing non-productive modes, improved protection, layout and user diagnostic features

    A Multi-level Multi-Modular Flying Capacitor Voltage Source Converter for High Power Applications

    Get PDF
    Two vital and dynamically changing issues are arising in the electric grid - an increase in electrical power demand, and subsequent reduction in power quality. Power electronics based solutions such as the Static Synchronous Compensator are increasingly deployed to mitigate power quality issues while High Voltage DC Transmission converters are currently installed to support the existing grid transmission capacity. Both applications require high power and high voltage power converters using switching devices with limited voltage ratings. The advent of Modular Multilevel Converters (MMC) is one of the recent responses to this need. These use half or full H-bridge circuits stacked up to form a chain, and hence can withstand high voltages using lower-rated switching devices. This thesis introduces a new member into the MMC family, i.e the Modular Multi-level Flying Capacitor Converter (MMFCC). This uses a three-level flying capacitor full-bridge circuit as a sub-module and offers features of modularity, scalability and fault tolerance. The choice of FC topology in place of the simple H-bridge stems from the FC’s ability to offer two extra voltage levels in the sub-module output and hence more degrees of freedom per module in controlling the voltage waveform. A three-level full-bridge FC sub-module uses three capacitors - an outer one for supporting the sub-module voltage, and two inner floating ones with half of the outer one’s capacitance and voltage rating. This use of slightly more complex FC sub-modules gives the benefits of a modular structure but without using twice as many sub-modules with their associated capacitors for the same total voltage. The thesis presents the principles of this topology, switching states redundancies and a method for capacitor voltage balancing. Also discussed are: the configuration of MMCC including the MMFCC in Single-Star Bridge-Cell (SSBC) or Single-Delta Bridge-Cell (SDBC) for FACTS and Battery Energy Storage System (BESS) applications; and Double-Star Chopper-Cell (DSCC) or Double-Star Bridge-Cell (DSBC) for HVDC systems. A novel overlapping hexagon pulse width modulation scheme is introduced and discussed for switching control of the MMFCC. This uses multiple hexagons all centred on one point, the same in number as the cascaded FC sub-modules, which are phase displaced relative to each other. The approach simplifies the modulation algorithm and brings flexibility in shaping the output voltage waveforms for different applications. An MMFCC experimental rig was designed and built in-house to validate some of the simulation results obtained for the modulation of this new topology. Details of the rig as well as results captured are discussed

    Industrial-Scale Manufacture of Oleosin 30G for Use as Contrast Agent in Echocardiography

    Get PDF
    In ultrasound sonography, microbubbles are used as contrasting agents to improve the effectiveness of ultrasound imaging. Monodisperse microbubbles are required to achieve the optimal image quality. In order to achieve a uniform size distribution, microbubbles are stabilized with surfactant molecules. One such molecule is Oleosin, an amphiphilic structural protein found in vascular plant oil bodies that contains one hydrophobic and two hydrophilic sections. Controlling the functionalization of microbubbles is a comprehensive and versatile process using recombinant technology to produce a genetically engineered form of Oleosin called Oleosin 30G. With the control of a microfluidic device, uniformly-sized and resonant microbubbles can be readily produced and stored in stable conditions up to one month. Currently, Oleosin microbubbles are limited to the lab-scale; however, through development of an integrated batch bioprocessing model, the overall product yield of Oleosin 30G can be increased to 7.39 kg/year to meet needs on the industrial-scale. An Oleosin-stabilized microbubble suspension as a contrast agent is in a strong position to take a competitive share of the current market, capitalizing on needs unmet by current market leader, Definity®. Based on market dynamics and process logistics, scaled-up production of Oleosin 30G for use as a contrast agent is expected to be both a useful and profitable venture

    Improved micro-contact resistance model that considers material deformation, electron transport and thin film characteristics

    No full text
    This paper reports on an improved analytic model forpredicting micro-contact resistance needed for designing microelectro-mechanical systems (MEMS) switches. The originalmodel had two primary considerations: 1) contact materialdeformation (i.e. elastic, plastic, or elastic-plastic) and 2) effectivecontact area radius. The model also assumed that individual aspotswere close together and that their interactions weredependent on each other which led to using the single effective aspotcontact area model. This single effective area model wasused to determine specific electron transport regions (i.e. ballistic,quasi-ballistic, or diffusive) by comparing the effective radius andthe mean free path of an electron. Using this model required thatmicro-switch contact materials be deposited, during devicefabrication, with processes ensuring low surface roughness values(i.e. sputtered films). Sputtered thin film electric contacts,however, do not behave like bulk materials and the effects of thinfilm contacts and spreading resistance must be considered. Theimproved micro-contact resistance model accounts for the twoprimary considerations above, as well as, using thin film,sputtered, electric contact

    An investigation into multi-spectral excitation power sources for Electrical Impedance Tomography

    Get PDF
    Electrical Impedance Tomography is a non-invasive, non-ionizing, non-destructive and painless imaging technology that can distinguish between cancerous and non-cancerous cells by reproducing tomographic images of the electrical impedance distribution within the body. The primary scope of this thesis is the study of hardware modules required for an EIT system. The key component in any EIT system is the excitation system. Impedance measurement can be performed by applying either a current or voltage through emitting electrodes and then measuring the resulting voltages or current on receiving electrodes. In this research, both types of excitation systems are investigated and developed for the Sussex EIM system. Firstly, a current source (CS) excitation system is investigated and developed. The performance of the excitation system degrades due to the unwanted capacitance within the system. Hence two CS circuits: Enhance Howland Source (EHS) and EHS combined with a General impedance convertor (GIC: to minimise the unwanted capacitance) are evaluated. Another technique (guard-amplifier) has also been investigated and developed to minimise the effect of stray capacitance. The accuracy of both types of CS circuits are evaluated in terms of its output impedance along with other performance parameters for different loading conditions and the results are compared to show their performance. Both CS circuits were affected by the loading voltage problem. A bootstrapping technique is investigated and integrated with both CS circuits to overcome the loading voltage problem. The research shows that both CS circuits were unable to achieve a high frequency bandwidth (i.e. ≥10MHz) and were limited to 2-3MHz. Alternatively, a discrete components current source was also investigated and developed to achieve a high frequency bandwidth and other desirable performance parameters. The research also introduces a microcontroller module to control the multiplexing involved for different CS circuit configurations via serial port interface software running on a PC. For breast cancer diagnosis, the interesting characteristics of breast tissues mostly lie above 1MHz, therefore a wideband excitation source covering high frequencies (i.e. ≥1-10MHz) is required. Hence, a second type of the excitation system is investigated. A constant voltage source (VS) circuit was developed for a wide frequency bandwidth with low output impedance. The research investigated three VS architectures and based on their initial bandwidth comparison, a differential VS system was developed to provide a wide frequency bandwidth (≥10MHz). The research presents the performance of the developed VS excitation system for different loading configurations reporting acceptable performance parameters. A voltage measurement system is also developed in this research work. Two different differential amplifier circuits were investigated and developed to measure precise differential voltage at a high frequency. The research reports a performance comparison of possible types of excitation systems. Results are compared to establish their relationship to performance parameters: frequency bandwidth, output impedance, SNR and phase difference over a wide bandwidth (i.e. up to 10MHz). The objective of this study is to investigate which design is the most appropriate for constructing a wideband excitation system for the Sussex EIM system or any other EIT based biomedical application with wide a bandwidth requirement

    NASA Tech Briefs, June 1990

    Get PDF
    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Space shuttle booster Data Management System (DMS) requirements analysis. Volume 2: Detail requirements

    Get PDF
    Space shuttle subsystem interface description, subsystem computational requirements, and analysis program - Vol.
    corecore