1 research outputs found

    ULTRA-LOW-JITTER, MMW-BAND FREQUENCY SYNTHESIZERS BASED ON A CASCADED ARCHITECTURE

    Get PDF
    Department of Electrical EngineeringThis thesis presents an ultra-low-jitter, mmW-band frequency synthesizers based on a cascaded architecture. First, the mmW-band frequency synthesizer based on a CP PLL is presented. At the first stage, the CP PLL operating at GHz-band frequencies generated low-jitter output signals due to a high-Q VCO. At the second stage, an ILFM operating at mmW-band frequencies has a wide injection bandwidth, so that the jitter performance of the mmW-band output signals is determined by the GHz-range PLL. The proposed ultra-low-jitter, mmW-band frequency synthesizer based on a CP PLL, fabricated in a 65-nm CMOS technology, generated output signals from GHz-band frequencies to mmW-band frequencies, achieving an RMS jitter of 206 fs and an IPN of ???31 dBc. The active silicon area and the total power consumption were 0.32 mm2 and 42 mW, respectively. However, due to a large in-band phase noise contribution of a PFD and a CP in the CP PLL, this first stage was difficult to achieve an ultra-low in-band phase noise. Second, to improve the in-band phase noise further, the mmW-band frequency synthesizer based on a digital SSPLL is presented. At the first stage, the digital SSPLL operating at GHz-band frequencies generated ultra-low-jitter output signals due to its sub-sampling operation and a high-Q GHz VCO. To minimize the quantization noise of the voltage quantizer in the digital SSPLL, this thesis presents an OSVC as a voltage quantizer while a small amount of power was consumed. The proposed ultra-low-jitter, mmW-band frequency synthesizer fabricated in a 65-nm CMOS technology, generated output signals from GHz-band frequencies to mmW-band frequencies, achieving an RMS jitter of 77 fs and an IPN of ???40 dBc. The active silicon area and the total power consumption were 0.32 mm2 and 42 mW, respectively.clos
    corecore